skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum Weyl-Heisenberg antiferromagnet
Beginning from the conventional square-lattice nearest-neighbor antiferromagnetic Heisenberg model, we allow the 𝐽𝑥 and 𝐽𝑦 couplings to be anisotropic, with their values depending on the bond orientation. The emergence of anisotropic, bond-dependent couplings should be expected to occur naturally in most antiferromagnetic compounds which undergo structural transitions that reduce the point-group symmetry at lower temperature. Using the spin-wave approximation, we study the model in several parameter regimes by diagonalizing the reduced Hamiltonian exactly and computing the edge spectrum and Berry connection vector, which show clear evidence of localized topological charges. We discover phases that exhibit Weyl-type spin-wave dispersion, characterized by pairs of degenerate points and edge states, as well as phases supporting lines of degeneracy. We also identify a parameter regime in which there is an exotic state hosting gapless linear spin-wave dispersions with different longitudinal and transverse spin-wave velocities.  more » « less
Award ID(s):
2110814
PAR ID:
10519623
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
108
Issue:
21
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We analyze a Higgs transition from a U(1) Dirac spin liquid to a gapless ℤ2spin liquid. This ℤ2spin liquid is of relevance to the spinS= 1/2 square lattice antiferromagnet, where recent numerical studies have given evidence for such a phase existing in the regime of high frustration between nearest neighbor and next-nearest neighbor antiferromagnetic interactions (theJ1-J2model), appearing in a parameter regime between the vanishing of Néel order and the onset of valence bond solid ordering. The proximate Dirac spin liquid is unstable to monopole proliferation on the square lattice, ultimately leading to Néel or valence bond solid ordering. As such, we conjecture that this Higgs transition describes the critical theory separating the gapless ℤ2spin liquid of theJ1-J2model from one of the two proximate ordered phases. The transition into the other ordered phase can be described in a unified manner via a transition into an unstable SU(2) spin liquid, which we have analyzed in prior work. By studying the deconfined critical theory separating the U(1) Dirac spin liquid from the gapless ℤ2spin liquid in a 1/Nfexpansion, withNfproportional to the number of fermions, we find a stable fixed point with an anisotropic spinon dispersion and a dynamical critical exponentz≠ 1. We analyze the consequences of this anisotropic dispersion by calculating the angular profiles of the equal-time Néel and valence bond solid correlation functions, and we find them to be distinct. We also note the influence of the anisotropy on the scaling dimension of monopoles. 
    more » « less
  2. Dimerized valence bond solids appear naturally in spin-1/2 systems on bipartite lattices, with the geometric frustrations playing a key role both in their stability and the eventual `melting' due to quantum fluctuations. Here, we ask the question of the stability of such dimerized solids in spin-1 systems, taking the anisotropic square lattice with bilinear and biquadratic spin-spin interactions as a paradigmatic model. The lattice can be viewed as a set of coupled spin-1 chains, which in the limit of vanishing inter-chain coupling are known to possess a stable dimer phase. We study this model using the density matrix renormalization group (DMRG) and infinite projected entangled-pair states (iPEPS) techniques, supplemented by the analytical mean-field and linear flavor wave theory calculations. While the latter predicts the dimer phase to remain stable up to a reasonably large interchain-to-intrachain coupling ratio r≲0.6, the DMRG and iPEPS find that the dimer solid melts for much weaker interchain coupling not exceeding r≲0.15. We find the transition into a magnetically ordered state to be first order, manifested by a hysteresis and order parameter jump, precluding the deconfined quantum critical scenario. The apparent lack of stability of dimerized phases in 2D spin-1 systems is indicative of strong quantum fluctuations that melt the dimer solid. 
    more » « less
  3. Abstract The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y 2 BaNiO 5 using Ni L 3 -edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y 2 BaNiO 5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations. 
    more » « less
  4. Data files for "Antiferromagnetic and bond-order-wave phases in the half-filled two-dimensional optical Su-Schrieffer-Heeger-Hubbard model" by A. Tanjaroon Ly, B. Cohen-Stead, and S. Johnston preprint: https://arxiv.org/abs/2502.14196 
    more » « less
  5. Abstract We focus on the ferric end-member of phase H: ε-FeOOH using density functional theory at the PBEsol+U level. At 300 K, we find that ε-FeOOH undergoes a hydrogen bond symmetrization at 37 GPa and a sharp high-spin to low-spin transition at 45 GPa. We find excellent agreement with experimental measurements of the equation of state, lattice parameters, atomic positions, vibrational frequencies, and optical properties as related to the band gap, which we find to be finite and small, decreasing with pressure. The hydrogen bond symmetrization transition is neither first-nor second-order, with no discontinuity in volume or any of the elastic moduli. Computed IR and Raman frequencies and intensities show that vibrational spectroscopy may provide the best opportunity for locating the hydrogen bond symmetrization transition experimentally. We find that ε-FeOOH is highly anisotropic in both longitudinal- and shear-wave velocities at all pressures, with the shear wave velocity varying with propagation and polarization direction by as much as 24% at zero pressure and 43% at 46 GPa. The shear and bulk elastic moduli increase by 18% across the high-spin to low-spin transition. 
    more » « less