Titanium dioxide (TiO 2 ) nanoparticles have been widely studied for water treatment applications; however, natural organic matter (NOM) is often reported to hamper the efficiency of the nanoparticles toward the degradation of target pollutants. Phosphate treatment has been proposed as a potentially facile solution to this problem, as phosphate competes for TiO 2 surface sites to diminish the NOM adsorption. However, the potential importance of the conditions of the NOM exposure and the residual NOM remaining after phosphate treatment have not been fully explored. Here, we investigate the reactivity of phosphate-treated TiO 2 nanoparticles with NOM coatings adsorbed from two background water chemistries, deionized water (TiO 2 –NOM DIW ) and moderately hard water (TiO 2 –NOM MHW ). Thorough characterization by size exclusion chromatography revealed that the adsorbed NOM was only partially displaced after phosphate treatment, with a higher adsorbed mass and wider variety of NOM species persisting on TiO 2 –NOM MHW compared to TiO 2 –NOM DIW . Although the remaining adsorbed NOM did not significantly influence the degradation rate of phenol as a model pollutant, remarkably distinct effects were observed in the degradation of catechol as an oxidative byproduct of phenol, with TiO 2 –NOM MHW hindering catechol degradation and TiO 2 –NOM DIW accelerating catechol degradation. The suppressed reactivity for TiO 2 –NOM MHW was attributed to hindrance of the physical adsorption of catechol to the TiO 2 surface by the NOM MHW layer as well as changes in the reactive oxygen species profile as measured by electron paramagnetic resonance (EPR) spectroscopy, whereas the enhanced reactivity for TiO 2 –NOM DIW was attributed to higher hole formation, suggesting participation of the NOM DIW layer in electron transfer processes. This research highlights the critical importance of the NOM surface coating in directing the mechanisms for pollutant degradation in photocatalytic nano-enabled water treatment applications.
more »
« less
Electron exchange capacity of pyrogenic dissolved organic matter (pyDOM): complementarity of square-wave voltammetry in DMSO and mediated chronoamperometry in water
Pyrogenic dissolved organic matter (pyDOM) is derived from black carbon, which is important in the global carbon cycle and other biogeochemical redox processes. The electron-exchange capacity (EEC) of pyDOM has been characterized in water using mediated chronoamperometry (MCA), which gives precise results under specific operational conditions, but the broader significance of these EECs is less clear. In this study, we described a novel but complementary electrochemical approach to quantify EECs of pyDOM without mediation using square-wave voltammetry (SWV) in dimethyl sulfoxide (DMSO). Using both the SWV and MCA methods, we determined EECs for 10 pyDOMs, 6 natural organic matter (NOM) samples, and 2 model quinones. The two methods gave similar EECs for model quinones, but SWV gave larger EECs than MCA for NOM and pyDOM (by several-fold and 1–2 orders of magnitude, respectively). The differences in the EECs obtained by SWV and MCA likely are due to multiple factors, including the potential range of electrons sampled, kinetics of electron transfer from (macro)molecular structures, and coupling of electron and proton transfer steps. Comparison of the results obtained by these two methods should provide new insights into important environmental processes such as carbon-cycling, wildfire recovery, and contaminant mitigation using carbon-based amendments.
more »
« less
- Award ID(s):
- 1752220
- PAR ID:
- 10413970
- Date Published:
- Journal Name:
- Environmental Science: Processes & Impacts
- Volume:
- 25
- Issue:
- 4
- ISSN:
- 2050-7887
- Page Range / eLocation ID:
- 767 to 780
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many challenges remain before we can fully understand the multifaceted role that natural organic matter (NOM) plays in soil and aquatic systems. These challenges remain despite the considerable progress that has been made in understanding NOM’s properties and reactivity using the latest analytical techniques. For nearly 4 decades, the International Humic Substances Society (IHSS, which is a non-profit scientific society) has distributed standard substances that adhere to strict isolation protocols and reference materials that are collected in bulk and originate from clearly defined sites. These NOM standard and reference samples offer relatively uniform materials for designing experiments and developing new analytical methods. The protocols for isolating NOM, and humic and fulvic acid fractions of NOM utilize well-established preparative scale column chromatography and reverse osmosis methods. These standard and reference NOM samples are used by the international scientific community to study NOM across a range of disciplines from engineered to natural systems, thereby seeding the transfer of knowledge across research fields. Recently, powerful new analytical techniques used to characterize NOM have revealed complexities in its composition that transcend the “microbial” vs. “terrestrial” precursor paradigm. To continue to advance NOM research in the Anthropocene epoch, a workshop was convened to identify potential new sites for NOM samples that would encompass a range of sources and precursor materials and would be relevant for studying NOM’s role in mediating environmental and biogeochemical processes. We anticipate that expanding the portfolio of IHSS reference and standard NOM samples available to the research community will enable this diverse group of scientists and engineers to better understand the role that NOM plays globally under the influence of anthropogenic mediated changes.more » « less
-
Global change influences biogeochemical cycles within and between environmental compartments ( i.e. , the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, particularly solar UV radiation. In terrestrial and aquatic ecosystems, NOM is degraded by UV and visible radiation, resulting in the emission of carbon dioxide (CO 2 ) and carbon monoxide, as well as a range of products that can be more easily degraded by microbes (photofacilitation). On land, droughts and land-use change can reduce plant cover causing an increase in exposure of plant litter to solar radiation. The altered transport of soil organic matter from terrestrial to aquatic ecosystems also can enhance exposure of NOM to solar radiation. An increase in emission of CO 2 from terrestrial and aquatic ecosystems due to the effects of global warming, such as droughts and thawing of permafrost soils, fuels a positive feedback on global warming. This is also the case for greenhouse gases other than CO 2 , including methane and nitrous oxide, that are emitted from terrestrial and aquatic ecosystems. These trace gases also have indirect or direct impacts on stratospheric ozone concentrations. The interactive effects of UV radiation and climate change greatly alter the fate of synthetic and biological contaminants. Contaminants are degraded or inactivated by direct and indirect photochemical reactions. The balance between direct and indirect photodegradation or photoinactivation of contaminants is likely to change with future changes in stratospheric ozone, and with changes in runoff of coloured dissolved organic matter due to climate and land-use changes.more » « less
-
Natural organic matter composition determines the molecular nature of silver nanomaterial-NOM coronaAdsorption of natural organic matter (NOM) on nanomaterials (NMs) results in the formation of interfacial area between NMs and the surrounding environment (referred to as NOM-corona), giving rise to NMs' unique surface identity. This unique surface identity is determined by the ligands and their interactions with NM surfaces. Since the chemical structure and functionality is heterogeneous and polydisperse, the molecular composition of NOM-corona is the result of competitive adsorption of NOM molecules on the NM surface. Here, we investigate the molecular composition of NOM-corona formed from two different NOM samples (isolated from the Yukon River and Milwaukee River) on the surface of AgNMs using electrospray ionization-Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). The composition of AgNM-NOM corona varied with the composition of the original NOM. In general, AgNM-NOM corona is rich with N- and S-containing compounds. Furthermore, AgNM-NOM corona is rich with compounds with high molecular weight, high unsaturation, and high number of oxygenated groups. However, CHOS (carbon, hydrogen, oxygen and sulfur) compounds adsorbed on AgNMs from the Yukon River NOM have low molecular weight (LMW) and low saturation index, which might be due to selective adsorption via chemical complexation (Ag–S). On the other hand, NOM compounds with LMW and low unsaturation or compounds containing few oxygenated groups (mainly alcohols and ethers) are preferentially maintained in solution phase. The results here provide evidence of molecular interactions between NOM and NMs, which are critical to understanding NM behavior and toxicity in natural environments.more » « less
-
The adsorption of foulants on photocatalytic nanoparticles can suppress their reactivity in water treatment applications by scavenging reactive species at the photocatalyst surface, screening light, or competing for surface sites. These inhibitory effects are commonly modeled using the Langmuir-Hinshelwood model, assuming that adsorbed layer compositions follow Langmuirian (equilibrium) competitive adsorption. However, this assumption has not been evaluated in complex mixtures of foulants. This study evaluates the photoreactivity of titanium dioxide (TiO2) nanoparticles toward a target compound, phenol, in the presence of two classes of foulants ─ natural organic matter (NOM) and a protein, bovine serum albumin (BSA) ─ and mixtures of the two. Langmuir adsorption models predict that BSA should strongly influence the nanoparticle photoreactivity because of its higher adsorption affinity relative to phenol and NOM. However, model evaluation of the experimental phenol decay rates suggested that neither the phenol nor foulant surface coverages are governed by Langmuirian competitive adsorption. Rather, a reactivity model incorporating kinetic predictions of adsorbed layer compositions (favoring NOM adsorption) outperformed Langmuirian models in providing accurate, unbiased predictions of phenol degradation rates. This research emphasizes the importance of using first-principles models that account for adsorption kinetics when assumptions of equilibrium adsorption do not apply.more » « less
An official website of the United States government

