skip to main content


Title: Identification of next-generation International Humic Substances Society reference materials for advancing the understanding of the role of natural organic matter in the Anthropocene
Abstract Many challenges remain before we can fully understand the multifaceted role that natural organic matter (NOM) plays in soil and aquatic systems. These challenges remain despite the considerable progress that has been made in understanding NOM’s properties and reactivity using the latest analytical techniques. For nearly 4 decades, the International Humic Substances Society (IHSS, which is a non-profit scientific society) has distributed standard substances that adhere to strict isolation protocols and reference materials that are collected in bulk and originate from clearly defined sites. These NOM standard and reference samples offer relatively uniform materials for designing experiments and developing new analytical methods. The protocols for isolating NOM, and humic and fulvic acid fractions of NOM utilize well-established preparative scale column chromatography and reverse osmosis methods. These standard and reference NOM samples are used by the international scientific community to study NOM across a range of disciplines from engineered to natural systems, thereby seeding the transfer of knowledge across research fields. Recently, powerful new analytical techniques used to characterize NOM have revealed complexities in its composition that transcend the “microbial” vs. “terrestrial” precursor paradigm. To continue to advance NOM research in the Anthropocene epoch, a workshop was convened to identify potential new sites for NOM samples that would encompass a range of sources and precursor materials and would be relevant for studying NOM’s role in mediating environmental and biogeochemical processes. We anticipate that expanding the portfolio of IHSS reference and standard NOM samples available to the research community will enable this diverse group of scientists and engineers to better understand the role that NOM plays globally under the influence of anthropogenic mediated changes.  more » « less
Award ID(s):
1804611 1724433 2028671
NSF-PAR ID:
10390590
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Date Published:
Journal Name:
Aquatic Sciences
Volume:
85
Issue:
1
ISSN:
1015-1621
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The insecticide and current use pesticide chlorpyrifos (CLP) is transported via global distillation to the Arctic where it may pose a threat to this ecosystem. CLP is readily detected in Arctic environmental compartments, but current research has not studied its partitioning between water and dissolved organic matter (DOM) nor the role of photochemistry in CLP's fate in aquatic systems. Here, the partition coefficients of CLP were quantified with various types of DOM isolated from the Arctic and an International Humic Substances Society (IHSS) reference material Suwannee River natural organic matter (SRNOM). While CLP readily partitions to DOM, CLP exhibits a significantly higher binding constant with Arctic lacustrine DOM relative to fluvial DOM or SRNOM. The experimental partitioning coefficients (KDOC) were compared to a calculated value estimated using poly parameter linear free energy relationship (pp-LFER) and was found to be in good agreement with SRNOM, but none of the Arctic DOMs. We found that Arctic KDOC values decrease with increasing SUVA254, but no correlations were observed for the other DOM compositional parameters. DOM also mediates the photodegradation of CLP, with stark differences in photo-kinetics using Arctic DOM isolated over time and space. This work highlights the chemo-diversity of Arctic DOM relative to IHSS reference materials and highlights the need for in-depth characterization of DOM that transcends the current paradigm based upon terrestrial and microbial precursors. 
    more » « less
  2. Abstract Background

    Although humic substances are the principal ingredients in processed humic products, there has been no practical way to determine if a material is humified, allowing fake products to be used by farmers instead of genuine humic substances.

    Objective

    To develop a test method using conventional laboratory techniques to determine if a material is humified.

    Method

    A neutralized extract is prepared using the standardized extraction protocols specified in ISO 19822:2018(E). A portion of the extract is used to determine the concentration of dissolved organic matter on an ash-free basis. A portion of the remaining neutralized extract is diluted to a concentration of 30 mg/kg of dissolved organic matter and transferred to a quartz UV cuvette for ultraviolet-visible (UV-Vis) spectroscopy. UV-Vis absorbance is recorded over a wavelength range of 220–500 nm at 5 nm intervals. The absorbance data are normalized by conversion to scaled absorbance, which is compared to a reference scaled absorbance spectral curve for humic substances to determine if the tested material is humic or non-humic.

    Results

    This method was able to differentiate legitimate humic substances from non-humic adulterants in a multiple-laboratory validation study (P ≤ 0.05).

    Conclusion

    This method can differentiate humic from non-humic substances in materials intended to be used as ingredients in commercial humic products or for research.

    Highlights

    This method uses common laboratory procedures and equipment.

     
    more » « less
  3. null (Ed.)
    Use of visible light photocatalytic nanomaterials in water treatment can be promising in treating contaminants. However, little research has been conducted examining the effects of more complex chemistries in the nanomaterial's performance. In this work, the effects of inorganic salts (NaCl and CaCl 2 ) and natural organic matter (NOM) such as humic acid (HA) and extracellular polymeric substances (EPS) on nanoparticle aggregation, dissolution, and ultimately on the photocatalytic properties of molybdenum trioxide (MoO 3 ), i.e. nanorods, nanowires, and nanoplates were examined. In the presence of NaCl, nanorod, nanowire, and nanoplate MoO 3 had similar critical coagulation concentrations, while the nanorods showed higher instability in CaCl 2 . Overall, the presence of inorganic salts caused high colloidal instability in the MoO 3 nanostructures in terms of aggregation behavior, but greatly aided in the reduction of MoO 3 dissolution. NOM presence decreased aggregation rates, albeit dissolution was not similarly affected in all three structures. Only the dissolution of the nanowire structures was reduced in the presence of HA or EPS. Furthermore, the photocatalytic activity of the nanowires and nanoplates was overall reduced when inorganic salts or natural organic matter were present. While the presence of natural organic matter alone did reduce photocatalytic effectiveness of the nanorod MoO 3 , the presence of salts seemed to negate the effects from the organic compounds. Furthermore, the presence of CaCl 2 resulted in a highly enhanced photocatalytic activity regardless of the presence of natural organic matter. The structural and chemical differences of the nanomaterials played a significant role in their aggregation, dissolution, and ability to photocatalytically degrade methylene blue in solution. This study demonstrates that a better understanding of water chemistry effects on nanomaterials is essential prior to their intended applications. 
    more » « less
  4. The Baltimore Ecosystem Study (BES) has established a network of long-term permanent biogeochemical study plots. These plots will provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The current network of study plots includes eight forest plots, chosen to represent the range of forest conditions in the area, and four grass plots. These plots are complemented by a network of 200 less intensive study plots located across the Baltimore metropolitan area. Plots are currently instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998. Data from these plots has been published in Groffman et al. (2006, 2009) and Groffman and Pouyat (2009). In November of 1998 four rural, forested plots were established at Oregon Ridge Park in Baltimore County northeast of the Gwynns Falls Watershed. Oregon Ridge Park contains Pond Branch, the forested reference watershed for BES. Two of these four plots are located on the top of a slope; the other two are located midway up the slope. In June of 2010 measurements at the mid-slope sites on Pond Branch were discontinued. Monuments and equipment remain at the two plots. These plots were replaced with two lowland riparian plots; Oregon upper riparian and Oregon lower riparian. Each riparian sites has four 5 cm by 1-2.5 meter depth slotted wells laid perpendicular to the stream, four tension lysimeters at 10 cm depth, five time domain reflectometry probes, and four trace gas flux chambers in the two dominant microtopographic features of the riparian zones - high spots (hummocks) and low spots (hollows). Four urban, forested plots were established in November 1998, two at Leakin Park and two adjacent to Hillsdale Park in west Baltimore City in the Gwynns Falls. One of the plots in Hillsdale Park was abandoned in 2004 due to continued vandalism. In May 1999 two grass, lawn plots were established at McDonogh School in Baltimore County west of the city in the Gwynns Falls. One of these plots is an extremely low intensity management area (mowed once or twice a year) and one is in a low intensity management area (frequent mowing, no fertilizer or herbicide use). In 2009, the McDonogh plots were abandoned due to management changes at the school. Two grass lawn plots were established on the campus of the University of Maryland, Baltimore County (UMBC) in fall 2000. One of these plots is in a medium intensity management area (frequent mowing, moderate applications of fertilizer and herbicides) and one is in a high intensity management area (frequent mowing, high applications of fertilizer and herbicides). Literature Cited Bowden R, Steudler P, Melillo J and Aber J. 1990. Annual nitrous oxide fluxes from temperate forest soils in the northeastern United States. J. Geophys. Res.-Atmos. 95, 13997 14005. Driscoll CT, Fuller RD and Simone DM (1988) Longitudinal variations in trace metal concentrations in a northern forested ecosystem. J. Environ. Qual. 17: 101-107 Goldman, M. B., P. M. Groffman, R. V. Pouyat, M. J. McDonnell, and S. T. A. Pickett. 1995. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biology and Biochemistry 27:281-286. Groffman PM, Holland E, Myrold DD, Robertson GP and Zou X (1999) Denitrification. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 272-290). Oxford University Press, New York Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. Holland EA, Boone R, Greenberg J, Groffman PM and Robertson GP (1999) Measurement of Soil CO2, N2O and CH4 exchange. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Robertson GP, Wedin D, Groffman PM, Blair JM, Holland EA, Nadelhoffer KJ and. Harris D. 1999. Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification and carbon turnover. In: Standard Soil Methods for Long Term Ecological Research (Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Savva, Y., K. Szlavecz, R. V. Pouyat, P. M. Groffman, and G. Heisler. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal 74:469-480." 
    more » « less
  5. MetFoam 2019 is the 11th edition of the biannual International Conference on Porous Metals and Metallic Foams; it was heled in Dearborn, Michigan, USA between August 20 and 23, 2019. Previous editions were held in various cities around the world starting in Bremen, Germany in 1999. This conference is the largest cross-disciplinary, international technical meeting focused exclusively on the production, properties, and applications of these lightweight multifunctional porous materials. In Dearborn, a total of 115 presentations were delivered at the conference by participants from 17 countries. Many participants travelled long distances to present and attend the conference. Students delivered 40% of the presentations. Emerging areas such as additive manufacturing and freeze casting, as well as nanoporous materials, cellular materials, and metallic metamaterials were covered by some of the presenters. The proceedings volume of MetFoam 2019 is the culmination of several months of work, which included the preparation of the papers by the authors, editing, and reviewing. The papers collected in this volume provide a representative snapshot of the research activity in the field. It is my sincere hope that this proceedings volume will remain a valuable record of MetFoam 2019, and that it will serve as a reference for researchers interested in porous metals and metallic foams. I would like to thank the reviewers and the session chairs for volunteering their precious time and effort. The International Scientific Board and the Steering Committee of MetFoam 2019 provided indispensable input and guidance throughout the planning of the conference. Thanks are also due to Kelcy Wagner and Trudi Dunlap from our organization partner The Minerals, Metals & Materials Society (TMS) for their assistance in the production of the proceedings volume, as well as for their vital hard work during the organization phase of the conference. Certainly, a special thanks go to our sponsors and exhibitors for making the event possible. 
    more » « less