skip to main content


This content will become publicly available on May 16, 2024

Title: Single-Point Extrapolation to the Complete Basis Set Limit through Deep Learning
Machine learning (ML) offers an attractive method for making predictions about molecular systems while circumventing the need to run expensive electronic structure calculations. Once trained on ab initio data, the promise of ML is to deliver accurate predictions of molecular properties that were previously computationally infeasible. In this work, we develop and train a graph neural network model to correct the basis set incompleteness error (BSIE) between a small and large basis set at the RHF and B3LYP levels of theory. Our results show that, when compared to fitting to the total potential, an ML model fitted to correct the BSIE is better at generalizing to systems not seen during training. We test this ability by training on single molecules while evaluating on molecular complexes. We also show that ensemble models yield better behaved potentials in situations where the training data is insufficient. However, even when only fitting to the BSIE, acceptable performance is only achieved when the training data sufficiently resemble the systems one wants to make predictions on. The test error of the final model trained to predict the difference between the cc-pVDZ and cc-pV5Z potential is 0.184 kcal/mol for the B3LYP density functional, and the ensemble model accurately reproduces the large basis set interaction energy curves on the S66x8 dataset.  more » « less
Award ID(s):
2213324
NSF-PAR ID:
10414033
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
ISSN:
1549-9618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to collect data with increased temporal and spatial resolution, providing data on a large scale with unprecedented levels of detail. This type of data has the potential to empower people to make personal decisions about their exposure and support the development of local strategies for reducing pollution and improving health outcomes. However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period and then applying machine learning or other model fitting technique such as multiple linear regression to develop a calibration model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of ambient conditions (e.g., temperature) and cross sensitivities with nontarget pollutants, there is a growing body of evidence that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation between pollutant levels and environmental conditions, including diurnal cycles. As a result, a sensor package trained at a field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or high-resolution monitoring of a neighborhood. We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting data from multiple regulatory sites and building a calibration model that leverages data from a more diverse data set. We deployed three sensor packages to each of three sites with reference monitors (nine packages total) and then rotated the sensor packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering varying environmental conditions, general air quality composition, and pollutant concentrations. When compared to prior single-site calibration, the multisite approach exhibits better model transferability for a range of modeling approaches. Our experiments also reveal that random forest is especially prone to overfitting and confirm prior results that transfer is a significant source of both bias and standard error. Linear regression, on the other hand, although it exhibits relatively high error, does not degrade much in transfer. Bias dominated in our experiments, suggesting that transferability might be easily increased by detecting and correcting for bias. Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration to lower the cost of training and better tolerate transfer. We contribute a new neural network architecture model termed split-NN that splits the model into two stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms multiple linear regression, traditional two- and four-layer neural networks, and random forest models. Depending on the training configuration, compared to random forest the split-NN method reduced error 0 %–11 % for NO2 and 6 %–13 % for O3. 
    more » « less
  2. SUMMARY

    The ability to accurately and reliably obtain images of shallow subsurface anomalies within the Earth is important for hazard monitoring and a fundamental understanding of many geologic structures, such as volcanic edifices. In recent years, machine learning (ML) has gained increasing attention as a novel approach for addressing complex problems in the geosciences. Here we present an ML-based inversion method to integrate cosmic-ray muon and gravity data sets for shallow subsurface density imaging at a volcano. Starting with an ensemble of random density anomalies, we use physics-based forward calculations to find the corresponding set of expected gravity and muon attenuation observations. Given a large enough ensemble of synthetic density patterns and observations, the ML algorithm is trained to recognize the expected spatial relations within the synthetic input–output pairs, learning the inherent physical relationships between them. Once trained, the ML algorithm can then interpolate the best-fitting anomalous pattern given data that were not used in training, such as those obtained from field measurements. We test the validity of our ML algorithm using field data from the Showa-Shinzan lava dome (Mt Usu, Japan) and show that our model produces results consistent with those obtained using a more traditional Bayesian joint inversion. Our results are similar to the previously published inversion, and suggest that the Showa-Shinzan lava dome consists of a relatively high-density (2200–2400 km m–3) cylindrical anomaly, about 300 m in diameter. Adding noise to synthetic training and testing data sets shows that, as expected, the ML algorithm is most robust in areas of high sensitivity, as determined by the forward kernels. Overall, we discover that ML offers a viable alternate method to a Bayesian joint inversion when used with gravity and muon data sets for subsurface density imaging.

     
    more » « less
  3. A major bottleneck of the current Machine Learning (ML) workflow is the time consuming, error prone engineering required to get data from a datastore or a database (DB) to the point an ML algorithm can be applied to it. This is further exacerbated since ML algorithms are now trained on large volumes of data, yet we need predictions in real-time, especially in a variety of time-series applications such as finance and real-time control systems. Hence, we explore the feasibility of directly integrating prediction functionality on top of a data store or DB. Such a system ideally: (i) provides an intuitive prediction query interface which alleviates the unwieldy data engineering; (ii) provides state-of-the-art statistical accuracy while ensuring incremental model update, low model training time and low latency for making predictions. As the main contribution we explicitly instantiate a proof-of-concept, tspDB which directly integrates with PostgreSQL. We rigorously test tspDB’s statistical and computational performance against the state-of-the-art time series algorithms, including a Long-Short-Term-Memory (LSTM) neural network and DeepAR (industry standard deep learning library by Amazon). Statistically, on standard time series benchmarks, tspDB outperforms LSTM and DeepAR with 1.1-1.3x higher relative accuracy. Computationally, tspDB is 59-62x and 94-95x faster compared to LSTM and DeepAR in terms of median ML model training time and prediction query latency, respectively. Further, compared to PostgreSQL’s bulk insert time and its SELECT query latency, tspDB is slower only by 1.3x and 2.6x respectively. That is, tspDB is a real-time prediction system in that its model training / prediction query time is similar to just inserting, reading data from a DB. As an algorithmic contribution, we introduce an incremental multivariate matrix factorization based time series method, which tspDB is built off. We show this method also allows one to produce reliable prediction intervals by accurately estimating the time-varying variance of a time series, thereby addressing an important problem in time series analysis. 
    more » « less
  4. Abstract

    In this work, we describe a simple approach to select the most important molecular orbitals (MOs) to compute the optical rotation tensor through linear response (LR) Kohn‐Sham density functional theory (KS‐DFT). Taking advantage of the iterative nature of the algorithms commonly used to solve the LR equations, we select the MOs with contributions to the guess perturbed density that are larger than a certain threshold and solve the LR equations with the selected MOs only. We propose two criteria for the selection, and two definitions of the selection threshold. We then test the approach with two functionals (B3LYP and CAM‐B3LYP) and two basis sets (aug‐cc‐pVDZ and aug‐cc‐pVTZ) on a set of 51 organic molecules with specific rotation spanning five orders of magnitude, 100–104deg (dm−1(g/mL)−1). We show that this approach indeed can provide very accurate values of specific rotation with estimated speedup that ranges from 2 to 8× with the most conservative selection criterion, and up to 20 to 30× with the intermediate criterion.

     
    more » « less
  5. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less