Rigid bodies, made of smaller composite beads, are commonly used to simulate anisotropic particles with molecular dynamics or Monte Carlo methods. To accurately represent the particle shape and to obtain smooth and realistic effective pair interactions between two rigid bodies, each body may need to contain hundreds of spherical beads. Given an interacting pair of particles, traditional molecular dynamics methods calculate all the inter-body distances between the beads of the rigid bodies within a certain distance. For a system containing many anisotropic particles, these distance calculations are computationally costly and limit the attainable system size and simulation time. However, the effective interaction between two rigid particles should only depend on the distance between their center of masses and their relative orientation. Therefore, a function capable of directly mapping the center of mass distance and orientation to the interaction energy between the two rigid bodies would completely bypass inter-bead distance calculations. It is challenging to derive such a general function analytically for almost any non-spherical rigid body. In this study, we have trained neural nets, powerful tools to fit nonlinear functions to complex datasets, to achieve this task. The pair configuration (center of mass distance and relative orientation) is taken as an input, and the energy, forces, and torques between two rigid particles are predicted directly. We show that molecular dynamics simulations of cubes and cylinders performed with forces and torques obtained from the gradients of the energy neural-nets quantitatively match traditional simulations that use composite rigid bodies. Both structural quantities and dynamic measures are in agreement, while achieving up to 23 times speedup over traditional molecular dynamics, depending on hardware and system size. The method presented here can, in principle, be applied to any irregular concave or convex shape with any pair interaction, provided that sufficient training data can be obtained.
more »
« less
Orientation effects on near-field radiative heat transfer between complex-shaped dielectric particles
The effect of orientation on near-field radiative heat transfer between two complex-shaped superellipsoid particles of SiO 2 is presented. The particles under study are 50 nm in radius and of variable concavity. Orientation is characterized by the degree of rotational symmetry in the two-particle systems, and the radiative conductance is calculated using the discrete system Green's function approach to account for all electromagnetic interactions. The results reveal that the total conductance in some orientations can be up to twice that of other orientations when particles are at a center-of-mass separation distance of 110 nm. Orientation effects are not significantly correlated with system rotational symmetries but are strongly correlated with the minimum vacuum gap distance between particles. As such, orientation effects on near-field radiative heat transfer are a consequence of particle topology, with more extreme topologies leading to a continuation of orientation effects at larger particle center-of-mass separation distances. The concave superellipsoid particles display significant orientation effects up to a center-of-mass separation distance approximately equal to 3.9 times the particle radius, while the convex superellipsoid particles display significant orientation effects up to a center-of-mass separation distance approximately equal to 3.2 times the particle radius. In contrast to previous anisotropic, spheroidal dipole studies, these results of complex-shaped superellipsoid particles suggest that orientation effects become negligible when heat transfer is a volumetric process for all orientations. This work is essential for understanding radiative transport between particles that have non-regular geometries or that may have geometrical defects or abnormalities.
more »
« less
- Award ID(s):
- 1952210
- PAR ID:
- 10414056
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 121
- Issue:
- 18
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- 182206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Radiative transfer through clouds can be impacted by variations in particle number size distribution, but also in particle spatial distribution. Due to turbulent mixing and inertial effects, spatial correlations often exist, even on scales reaching the cloud droplet separation distance. The resulting clusters and voids within the droplet field can lead to deviations from exponential extinction. Prior work has numerically investigated these departures from exponential attenuation in absorptive and scattering media; this work takes a step towards determining the feasibility of detecting departures from exponential behavior due to spatial correlation in turbulent clouds generated in a laboratory setting. Large Eddy Simulation (LES) is used to mimic turbulent mixing clouds generated in a laboratory convection cloud chamber. Light propagation through the resulting polydisperse and spatially correlated particle fields is explored via Monte Carlo ray tracing simulations. The key finding is that both mean radiative flux and standard deviation about the mean differ when correlations exist, suggesting that an experiment using a laboratory convection cloud chamber could be designed to investigate non-exponential behavior. Total forward flux is largely unchanged (due to scattering being highly forward-dominant for the size parameters considered), allowing it to be used for conditional sampling based on optical thickness. Direct and diffuse forward flux means are modified by approximately one standard deviation. Standard deviations of diffuse forward and backward fluxes are strongly enhanced, suggesting that fluctuations in the scattered light are a more sensitive metric to consider. The results also suggest the possibility that measurements of radiative transfer could be used to infer the strength and scales of correlations in a turbulent cloud, indicating entrainment and mixing effects.more » « less
-
Oscillations of a heated solid surface in an oncoming fluid flow can increase heat transfer from the solid to the fluid. Previous studies have investigated the resulting heat transfer enhancement for the case of a circular cylinder undergoing translational or rotational motions. Another common geometry, the flat plate, has not been studied as thoroughly. The flat plate sheds larger and stronger vortices that are sensitive to the plate’s direction of oscillation. To study the effect of these vortices on heat transfer enhancement, we conduct two-dimensional numerical simulations to compute the heat transfer from a flat plate with different orientations and oscillation directions in an oncoming flow with Reynolds number 100. We consider plates with fixed temperature and fixed heat flux, and find large heat transfer enhancement in both cases. We investigate the effects of the plate orientation angle and the plate oscillation direction, velocity, amplitude and frequency, and find that the plate oscillation velocity and direction have the strongest effects on global heat transfer. The other parameters mainly affect the local heat transfer distributions through shed vorticity distributions. We also discuss the input power needed for the oscillating-plate system and the resulting Pareto optimal cases.more » « less
-
Active particles, or micromotors, locally dissipate energy to drive locomotion at small length scales. The type of trajectory is generally fixed and dictated by the geometry and composition of the particle, which can be challenging to tune using conventional fabrication procedures. Here, we report a simple, bottom-up method to magnetically assemble gold-coated polystyrene Janus particles into “locked” clusters that display diverse trajectories when stimulated by AC electric fields. The orientation of particles within each cluster gives rise to distinct modes of locomotion, including translational, rotational, trochoidal, helical, and orbital. We model this system using a simplified rigid beads model and demonstrate qualitative agreement between the predicted and experimentally observed cluster trajectories. Overall, this system provides a facile means to scalably create micromotors with a range of well-defined motions from discrete building blocks.more » « less
-
null (Ed.)Abstract We present a method for creating a new type of model particle that allows us to measure the mass transfer rate from the particle surface to the surrounding water. We use hollow glass spheres and sugar to create neutrally buoyant particles in a variety of molded shapes. These particles are an alternative to traditional gypsum objects for measuring mass transfer, with the important characteristic of being neutrally buoyant. This is an inexpensive method that allows for custom particle shapes to be manufactured with different densities. We test the utility of these particles by measuring their dissolution rates in homogeneous, isotropic turbulence in our laboratory turbulence tank. Our measurements fit our proposed model, and give a faster dissolution rate for rod-shaped particles than for disc-shaped ones. Graphic abstractmore » « less
An official website of the United States government

