Abstract In shallow coastal oceans, turbulent flows driven by surface winds and waves and constrained by a solid bottom disperse particles. This work examines the mechanisms driving horizontal and vertical dispersion of buoyant and sinking particles for times much greater than turbulent integral time scales. Turbulent fields are modeled using a wind‐stress driven large eddy simulation (LES), incorporating wave‐driven Langmuir turbulence, surface breaking wave turbulent kinetic energy inputs, and a solid bottom boundary. A Lagrangian stochastic model is paired to the LES to incorporate Lagrangian particle tracking. Within a subset of intermediate buoyant rise velocities, particles experience synergistic vertical mixing in which breaking waves (BW) inject particles into Langmuir downwelling velocities sufficient to drive deep mixing. Along‐wind dispersion is controlled by vertical shear in mean along‐wind velocities. Wind and bottom friction‐driven vertical shear enhances dispersion of buoyant and sinking particles, while energetic turbulent mixing, such as from BW, dampens shear dispersion. Strongly rising and sinking particles trapped at the ocean surface and bottom, respectively, experience no vertical shear, resulting in low rates of along‐wind dispersion. Crosswind dispersion is shaped by particle advection in wind‐aligned fields of counter‐rotating Langmuir and Couette roll cells. Langmuir cells enhance crosswind dispersion in neutrally to intermediately buoyant particles through enhanced cell hopping. Surface trapping restricts particles to Langmuir convergence regions, strongly inhibiting crosswind dispersion. In shallow coastal systems, particle dispersion depends heavily on particle buoyancy and wave‐dependent turbulent effects.
more »
« less
A new particle for measuring mass transfer in turbulence
Abstract We present a method for creating a new type of model particle that allows us to measure the mass transfer rate from the particle surface to the surrounding water. We use hollow glass spheres and sugar to create neutrally buoyant particles in a variety of molded shapes. These particles are an alternative to traditional gypsum objects for measuring mass transfer, with the important characteristic of being neutrally buoyant. This is an inexpensive method that allows for custom particle shapes to be manufactured with different densities. We test the utility of these particles by measuring their dissolution rates in homogeneous, isotropic turbulence in our laboratory turbulence tank. Our measurements fit our proposed model, and give a faster dissolution rate for rod-shaped particles than for disc-shaped ones. Graphic abstract
more »
« less
- Award ID(s):
- 1604026
- PAR ID:
- 10295740
- Date Published:
- Journal Name:
- Experiments in Fluids
- Volume:
- 62
- Issue:
- 1
- ISSN:
- 0723-4864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many solid-dose oral drug products are engineered to release their active ingredients into the body at a certain rate. Techniques for measuring the dissolution or degradation of a drug product in vitro play a crucial role in predicting how a drug product will perform in vivo. However, existing techniques are often labor-intensive, time-consuming, irreproducible, require specialized analytical equipment, and provide only “snapshots” of drug dissolution every few minutes. These limitations make it difficult for pharmaceutical companies to obtain full dissolution profiles for drug products in a variety of different conditions, as recommended by the US Food and Drug Administration. Additionally, for drug dosage forms containing multiple controlled-release pellets, particles, beads, granules, etc. in a single capsule or tablet, measurements of the dissolution of the entire multi-particle capsule or tablet are incapable of detecting pellet-to-pellet variations in controlled release behavior. In this work, we demonstrate a simple and fully-automated technique for obtaining dissolution profiles from single controlled-release pellets. We accomplished this by inverting the drug dissolution problem: instead of measuring the increase in the concentration of drug compounds in the solution during dissolution (as is commonly done), we monitor the decrease in the buoyant mass of the solid controlled-release pellet as it dissolves. We weigh single controlled-release pellets in fluid using a vibrating tube sensor, a piece of glass tubing bent into a tuning-fork shape and filled with any desired fluid. An electronic circuit keeps the glass tube vibrating at its resonance frequency, which is inversely proportional to the mass of the tube and its contents. When a pellet flows through the tube, the resonance frequency briefly changes by an amount that is inversely proportional to the buoyant mass of the pellet. By passing the pellet back-and-forth through the vibrating tube sensor, we can monitor its mass as it degrades or dissolves, with high temporal resolution (measurements every few seconds) and mass resolution (700 nanogram resolution). As a proof-of-concept, we used this technique to measure the single-pellet dissolution profiles of several commercial controlled-release proton pump inhibitors in simulated stomach and intestinal contents, as well as comparing name-brand and generic formulations of the same drug. In each case, vibrating tube sensor data revealed significantly different dissolution profiles for the different drugs, and in some cases our method also revealed differences between different pellets from the same drug product. By measuring any controlled-release pellets, particles, beads, or granules in any physiologically-relevant environment in a fully-automated fashion, this method can augment and potentially replace current dissolution tests and support product development and quality assurance in the pharmaceutical industry.more » « less
-
Understanding the two-way interactions between finite-size solid particles and a wall-bounded turbulent flow is crucial in a variety of natural and engineering applications. Previous experimental measurements and particle-resolved direct numerical simulations revealed some interesting phenomena related to particle distribution and turbulence modulation, but their in-depth analyses are largely missing. In this study, turbulent channel flows laden with neutrally buoyant finite-size spherical particles are simulated using the lattice Boltzmann method. Two particle sizes are considered, with diameters equal to 14.45 and 28.9 wall units. To understand the roles played by the particle rotation, two additional simulations with the same particle sizes but no particle rotation are also presented for comparison. Particles of both sizes are found to form clusters. Under the Stokes lubrication corrections, small particles are found to have a stronger preference to form clusters, and their clusters orientate more in the streamwise direction. As a result, small particles reduce the mean flow velocity less than large particles. Particles are also found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall-normal direction, as well as a more isotropic distribution of TKE among different spatial directions. To understand these turbulence modulation phenomena, we analyse in detail the total and component-wise volume-averaged budget equations of TKE with the simulation data. This budget analysis reveals several mechanisms through which the particles modulate local and global TKE in the particle-laden turbulent channel flow.more » « less
-
The purpose of this note is to present an enhancement to a Maxey–Riley theory proposed in recent years for the dynamics of inertial particles on the ocean surface [Beron-Vera et al., “Building a Maxey–Riley framework for surface ocean inertial particle dynamics,” Phys. Fluids 31, 096602 (2019)]. This updated model removes constraints on the reserve buoyancy, defined as the fraction of the particle volume above the ocean surface. The refinement results in an equation that correctly describes both the neutrally buoyant and fully buoyant particle scenarios.more » « less
-
A quasi-steady-state model of the dissolution of a single prolate or oblate spheroidal particle has been developed based on the exact solution of the steady-state diffusion equation for mass transfer in an unconfined media. With appropriate treatment of bulk concentration, the model can predict the detailed dissolution process of a single particle in a container of finite size. The dimensionless governing equations suggest that the dissolution process is determined by three dimensionless control parameters, initial solid particle concentration, particle aspect ratio and the product of specific volume of solid particles and saturation concentration of the dissolved substance. Using this model, the dissolution processes of felodipine particles are analysed in a broad range of space of the three control parameters and some characteristics are identified. The effects of material properties indicated by the product of specific volume and saturation concentration are also analysed. The model and the analysis are applicable to the system of monodisperse spheroidal particles of the same shape.more » « less
An official website of the United States government

