skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Severe inbreeding, increased mutation load and gene loss-of-function in the critically endangered Devils Hole pupfish
Small populations with limited range are often threatened by inbreeding and reduced genetic diversity, which can reduce fitness and exacerbate population decline. One of the most extreme natural examples is the Devils Hole pupfish ( Cyprinodon diabolis ), an iconic and critically endangered species with the smallest known range of any vertebrate. This species has experienced severe declines in population size over the last 30 years and suffered major bottlenecks in 2007 and 2013, when the population shrunk to 38 and 35 individuals, respectively. Here, we analysed 30 resequenced genomes of desert pupfishes from Death Valley, Ash Meadows and surrounding areas to examine the genomic consequences of small population size. We found extremely high levels of inbreeding ( F ROH = 0.34–0.81) and an increased amount of potentially deleterious genetic variation in the Devils Hole pupfish as compared to other species, including unique, fixed loss-of-function alleles and deletions in genes associated with sperm motility and hypoxia. Additionally, we successfully resequenced a formalin-fixed museum specimen from 1980 and found that the population was already highly inbred prior to recent known bottlenecks. We thus document severe inbreeding and increased mutation load in the Devils Hole pupfish and identify candidate deleterious variants to inform management of this conservation icon.  more » « less
Award ID(s):
1938571
PAR ID:
10414070
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1986
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the genetic and fitness consequences of anthropogenic bottlenecks is crucial for biodiversity conservation. However, studies of bottlenecked populations combining genomic approaches with fitness data are rare. Theory predicts that severe bottlenecks deplete genetic diversity, exacerbate inbreeding depression and decrease population viability. However, actual outcomes are complex and depend on how a species’ unique demography affects its genetic load. We used population genetic and veterinary pathology data, demographic modelling, whole-genome resequencing and forward genetic simulations to investigate the genomic and fitness consequences of a near-extinction event in the northern elephant seal. We found no evidence of inbreeding depression within the contemporary population for key fitness components, including body mass, blubber thickness and susceptibility to parasites and disease. However, we detected a genomic signature of a recent extreme bottleneck (effective population size = 6; 95% confidence interval = 5.0–7.5) that will have purged much of the genetic load, potentially leading to the lack of observed inbreeding depression in our study. Our results further suggest that deleterious genetic variation strongly impacted the post-bottleneck population dynamics of the northern elephant seal. Our study provides comprehensive empirical insights into the intricate dynamics underlying species-specific responses to anthropogenic bottlenecks. 
    more » « less
  2. Purugganan, Michael (Ed.)
    Abstract The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations. 
    more » « less
  3. Abstract Theory predicts that threatened species living in small populations will experience high levels of inbreeding that will increase their genetic load, but recent work suggests that the impact of load may be minimized by purging resulting from long‐term population bottlenecks. Empirical studies that examine this idea using genome‐wide estimates of inbreeding and genetic load in threatened species are limited. Here we use individual genome resequencing data to compare levels of inbreeding, levels of genetic load (estimated as mutation load) and population history in threatened Eastern massasauga rattlesnakes (Sistrurus catenatus), which exist in small isolated populations, and closely related yet outbred Western massasauga rattlesnakes (Sistrurus tergeminus). In terms of inbreeding,S. catenatusgenomes had a greater number of runs of homozygosity of varying sizes, indicating sustained inbreeding through repeated bottlenecks when compared toS. tergeminus. At the species level, outbredS. tergeminushad higher genome‐wide levels of mutation load in the form of greater numbers of derived deleterious mutations compared toS. catenatus, presumably due to long‐term purging of deleterious mutations inS. catenatus. In contrast, mutations that escaped species‐level drift effects withinS. catenatuspopulations were in general more frequent and more often found in homozygous genotypes than inS. tergeminus, suggesting a reduced efficiency of purifying selection in smallerS. catenatuspopulations for most mutations. Our results support an emerging idea that the historical demography of a threatened species has a significant impact on the type of genetic load present, which impacts implementation of conservation actions such as genetic rescue. 
    more » « less
  4. Abstract Emerging infectious diseases (EIDs) not only cause catastrophic declines in wildlife populations but also generate selective pressures that may result in rapid evolutionary responses. One such EID is devil facial tumour disease (DFTD) in the Tasmanian devil. DFTD is almost always fatal and has reduced the average lifespan of individuals by around 2 years, likely causing strong selection for traits that reduce susceptibility to the disease, but population decline has also left Tasmanian devils vulnerable to inbreeding depression. We analysed 22 years of data from an ongoing study of a population of Tasmanian devils on Freycinet Peninsula, Tasmania, to (1) identify whether DFTD may be causing selection on body size, by estimating phenotypic and genetic correlations between DFTD and size traits, (2) estimate the additive genetic variance of susceptibility to DFTD, and (3) investigate whether size traits or susceptibility to DFTD were under inbreeding depression. We found a positive phenotypic relationship between head width and susceptibility to DFTD, but this was not underpinned by a genetic correlation. Conversely, we found a negative phenotypic relationship between body weight and susceptibility to DFTD, and there was evidence for a negative genetic correlation between susceptibility to DFTD and body weight. There was additive genetic variance in susceptibility to DFTD, head width and body weight, but there was no evidence for inbreeding depression in any of these traits. These results suggest that Tasmanian devils have the potential to respond adaptively to DFTD, although the realised evolutionary response will critically further depend on the evolution of DFTD itself. 
    more » « less
  5. Habitat degradation and loss of genetic diversity are common threats faced by almost all of today’s wild cats. Big cats, such as tigers and lions, are of great concern and have received considerable conservation attention through policies and international actions. However, knowledge of and conservation actions for small wild cats are lagging considerably behind. The black-footed cat,Felis nigripes, one of the smallest felid species, is experiencing increasing threats with a rapid reduction in population size. However, there is a lack of genetic information to assist in developing effective conservation actions. A de novo assembly of a high-quality chromosome-level reference genome of the black-footed cat was made, and comparative genomics and population genomics analyses were carried out. These analyses revealed that the most significant genetic changes in the evolution of the black-footed cat are the rapid evolution of sensory and metabolic-related genes, reflecting genetic adaptations to its characteristic nocturnal hunting and a high metabolic rate. Genomes of the black-footed cat exhibit a high level of inbreeding, especially for signals of recent inbreeding events, which suggest that they may have experienced severe genetic isolation caused by habitat fragmentation. More importantly, inbreeding associated with two deleterious mutated genes may exacerbate the risk of amyloidosis, the dominant disease that causes mortality of about 70% of captive individuals. Our research provides comprehensive documentation of the evolutionary history of the black-footed cat and suggests that there is an urgent need to investigate genomic variations of small felids worldwide to support effective conservation actions. 
    more » « less