The transition from conventional to organic agriculture is often challenged by the adaptation of biological control agents to environments heavily exposed to agrochemical pollutants. We studied Trichoderma species isolated from living leaf tissues of wild Rubiacaeae (coffee family) plants to determine their fungicide tolerance and potential for bioremoval. First, we assessed the in vitro tolerance to fungicides of four Trichoderma isolates ( Trichoderma rifaii T1, T . aff. crassum T2, T . aff. atroviride T3, and T . aff. strigosellum T4) by placing mycelial plugs onto solid media supplemented with seven different systemic and non-systemic fungicides. After a week, most of the fungicides did not significantly inhibit the growth of the isolates, except in the case of cyproconazole, where the only isolate able to grow was T1; however, the colony morphology was affected by the presence of fungicides. Second, biological removal potential was established for selected isolates. For this experiment, the isolates T1, T2, and T4 were independently inoculated into liquid media with the fungicides azoxystrobin, chlorothalonil, cyproconazole, and trifloxystrobin. After 14 days of incubation, a removal of up to 89% was achieved for chlorothalonil, 46.4% for cyproconazole, and 33.1% for trifloxystrobin using viable biomass. In the case of azoxystrobin, the highest removal (82.2%) occurred by adsorption to fungal biomass. Ecotoxicological tests in Daphnia magna revealed that T1 has the highest removal potential, achieving significant elimination of every fungicide, while simultaneously detoxifying the aqueous matrix (except in the case of cyproconazole). Isolate T4 also exhibited an intermediate efficiency, while isolate T2 was unable to detoxify the matrix in most cases. The removal and detoxification of cyproconazole failed with all the isolates. These findings suggest that endosphere of wild plants could be an attractive guild to find new Trichoderma species with promising bioremediation capabilities. In addition, the results demonstrate that attention should be placed when combining certain types of agrochemicals with antagonistic fungi in Integrated Pest and Disease Management strategies or when transitioning to organic agriculture.
more »
« less
The endophytobiome of wild Rubiaceae as a source of antagonistic fungi against the American Leaf Spot of coffee ( Mycena citricolor )
Abstract AimsThe American leaf spot, caused by Mycena citricolor, is an important disease of coffee (Coffea arabica), mostly in Central America. Currently, there are limited pathogen control alternatives that are environment friendly and economically accessible. The use of fungi isolated from the plant endomycobiota in their native habitats is on the rise because studies show their great potential for biological control. To begin to generate a green alternative to control M. citricolor, the objectives of the present study were to (i) collect, identify, screen (in vitro and in planta), and select endophytic fungi from wild Rubiaceae collected in old-growth forests of Costa Rica; (ii) confirm endophytic colonization in coffee plantlets; (iii) evaluate the effects of the endophytes on plantlet development; and (iv) corroborate the antagonistic ability in planta. Methods and resultsThrough in vitro and in planta antagonism assays, we found that out of the selected isolates (i.e. Daldinia eschscholzii GU11N, Nectria pseudotrichia GUHN1, Purpureocillium aff. lilacinum CT24, Sarocladium aff. kiliense CT25, Trichoderma rifaii CT5, T. aff. crassum G1C, T. aff. atroviride G7T, T. aff. strigosellum GU12, and Xylaria multiplex GU14T), Trichoderma spp. produced the highest growth inhibition percentages in vitro. Trichoderma isolates CT5 and G1C were then tested in planta using Coffea arabica cv. caturra plantlets. Endophytic colonization was verified, followed by in planta growth promotion and antagonism assays. ConclusionsResults show that Trichoderma isolates CT5 and G1C have potential for plant growth promotion and antagonism against Mycena citricolor, reducing incidence and severity, and preventing plant mortality.
more »
« less
- PAR ID:
- 10414138
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Applied Microbiology
- Volume:
- 134
- Issue:
- 5
- ISSN:
- 1365-2672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fungal endophytes are pivotal components of a plant's microbiome, profoundly impacting its health and fitness. Yet, myriad questions remain concerning the intricate interactions between these microorganisms and their hosts, particularly in the context of agriculturally important plants such asCoffea arabica. To bridge this knowledge gap and provide a comprehensive framework, this study investigated how farming practices shape the taxonomic and functional diversity of phylloplane endophytes in coffee. Coffee plant leaves from two distinct producing regions in Costa Rica were sampled, ensuring the representation of various coffee varieties (Obatá, Catuaí, and Caturra), agricultural management methods (organic vs. conventional), sun exposure regimes (full sunlight/monoculture vs. natural shade/agroforestry), and leaf developmental stages (newly emerged asymptomatic vs. mature leaves). Fungal communities were characterized by employing both culture‐dependent and independent techniques (internal transcribed spacer 2 nuclear ribosomal DNA metabarcoding). The results showed a greater diversity of endophytes in mature leaves and conventionally managed plants, with coffee variety exerting an unclear influence. The effect of sun exposure was surprisingly negligible. However, data emphasize the benefits of agroforestry and organic farming, which are linked to reduced putative pathogens and heightened levels of potentially mutualistic fungi, fostering functionally diverse communities. Despite the role that plant microbiomes might play in agricultural production, the knowledge to shape endophytic communities through breeding or management is lacking. The results from this study provide a framework to understand how both plant and agricultural practices influence endophyte diversity within coffee crops. These insights hold promise for guiding future efforts to manipulate coffee microbial communities effectively.more » « less
-
Wilson, Richard A. (Ed.)Trichodermais a cosmopolitan genus with diverse lifestyles and nutritional modes, including mycotrophy, saprophytism, and endophytism. Previous research has reported greater metabolic gene repertoires in endophytic fungal species compared to closely-related non-endophytes. However, the extent of this ecological trend and its underlying mechanisms are unclear. Some endophytic fungi may also be mycotrophs and have one or more mycoparasitism mechanisms. Mycotrophic endophytes are prominent in certain genera likeTrichoderma, therefore, the mechanisms that enable these fungi to colonize both living plants and fungi may be the result of expanded metabolic gene repertoires. Our objective was to determine what, if any, genomic features are overrepresented in endophytic fungi genomes in order to undercover the genomic underpinning of the fungal endophytic lifestyle. Here we compared metabolic gene cluster and mycoparasitism gene diversity across a dataset of thirty-eightTrichodermagenomes representing the full breadth of environmentalTrichoderma’s diverse lifestyles and nutritional modes. We generated four newTrichoderma endophyticumgenomes to improve the sampling of endophytic isolates from this genus. As predicted, endophyticTrichodermagenomes contained, on average, more total biosynthetic and degradative gene clusters than non-endophytic isolates, suggesting that the ability to create/modify a diversity of metabolites potential is beneficial or necessary to the endophytic fungi. Still, once the phylogenetic signal was taken in consideration, no particular class of metabolic gene cluster was independently associated with theTrichodermaendophytic lifestyle. Several mycoparasitism genes, but no chitinase genes, were associated with endophyticTrichodermagenomes. Most genomic differences betweenTrichodermalifestyles and nutritional modes are difficult to disentangle from phylogenetic divergences among species, suggesting thatTrichodermagenomes maybe particularly well-equipped for lifestyle plasticity. We also consider the role of endophytism in diversifying secondary metabolism after identifying the horizontal transfer of the ergot alkaloid gene cluster toTrichoderma.more » « less
-
Abstract PremiseAllopolyploidy—a hybridization‐induced whole‐genome duplication event—has been a major driver of plant diversification. The extent to which chromosomes pair with their proper homolog vs. with their homoeolog in allopolyploids varies across taxa, and methods to detect homoeologous gene flow (HGF) are needed to understand how HGF has shaped polyploid lineages. MethodsThe ABBA‐BABA test represents a classic method for detecting introgression between closely related species, but here we developed a modified use of the ABBA‐BABA test to characterize the extent and direction of HGF in allotetraploidCoffea arabica. ResultsWe found that HGF is abundant in theC. arabicagenome, with both subgenomes serving as donors and recipients of variation. We also found that HGF is highly maternally biased in plastid‐targeted—but not mitochondrial‐targeted—genes, as would be expected if plastid–nuclear incompatibilities exist between the two parent species. DiscussionTogether, our analyses provide a simple framework for detecting HGF and new evidence consistent with selection favoring overwriting of paternally derived alleles by maternally derived alleles to ameliorate plastid–nuclear incompatibilities. Natural selection therefore appears to shape the direction and intensity of HGF in allopolyploid coffee, indicating that cytoplasmic inheritance has long‐term consequences for polyploid lineages.more » « less
-
Abstract Coffea arabica, an allotetraploid hybrid ofCoffea eugenioidesandCoffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploidC. arabicaaccession and modern representatives of its diploid progenitors,C. eugenioidesandC. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000–610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed withC. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding ofC. arabica.more » « less
An official website of the United States government
