skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing continuous equilibrium structures that counteract gravity in any orientation
Abstract This paper presents a framework that can transform reconfigurable structures into systems with continuous equilibrium. The method involves adding optimized springs that counteract gravity to achieve a system with a nearly flat potential energy curve. The resulting structures can move or reconfigure effortlessly through their kinematic paths and remain stable in all configurations. Remarkably, our framework can design systems that maintain continuous equilibrium during reorientation, so that a system maintains a nearly flat potential energy curve even when it is rotated with respect to a global reference frame. This ability to reorient while maintaining continuous equilibrium greatly enhances the versatility of deployable and reconfigurable structures by ensuring they remain efficient and stable for use in different scenarios. We apply our framework to several planar four-bar linkages and explore how spring placement, spring types, and system kinematics affect the optimized potential energy curves. Next, we show the generality of our method with more complex linkage systems that carry external masses and with a three-dimensional origami-inspired deployable structure. Finally, we adopt a traditional structural engineering approach to give insight on practical issues related to the stiffness, reduced actuation forces, and locking of continuous equilibrium systems. Physical prototypes support the computational results and demonstrate the effectiveness of our method. The framework introduced in this work enables the stable, and efficient actuation of reconfigurable structures under gravity, regardless of their global orientation. These principles have the potential to revolutionize the design of robotic limbs, retractable roofs, furniture, consumer products, vehicle systems, and more.  more » « less
Award ID(s):
1943723
PAR ID:
10414145
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and control mechanism. Taking inspiration from thick origami and hierarchies in nature, we present a hierarchical construction method based on polyhedrons to create an extensive library of compact origami metastructures. We show that a single hierarchical origami structure can autonomously adapt to over 103versatile architectural configurations, achieved with the utilization of fewer than 3 actuation degrees of freedom and employing simple transition kinematics. We uncover the fundamental principles governing theses shape transformation through theoretical models. Furthermore, we also demonstrate the wide-ranging potential applications of these transformable hierarchical structures. These include their uses as untethered and autonomous robotic transformers capable of various gait-shifting and multidirectional locomotion, as well as rapidly self-deployable and self-reconfigurable architecture, exemplifying its scalability up to the meter scale. Lastly, we introduce the concept of multitask reconfigurable and deployable space robots and habitats, showcasing the adaptability and versatility of these metastructures. 
    more » « less
  2. Abstract Latch-mediated spring actuation (LaMSA) systems leverage the interplay of springs and latches to rapidly accelerate a load. In biological systems, elastic energy is often distributed across multiple structures, resulting in forces applied from multiple springs. Here, we specifically examine dual spring force couples in torque reversal systems. A dual spring force couple applies forces from recoiling springs at two locations to generate torque. Torque reversal systems transition from spring loading to spring actuation through a change in torque direction. We develop a mathematical model of a dual spring force couple in a torque reversal system, where one spring is attached to the pivot point of the rigid body. During spring loading, this spring compresses to store elastic energy; during spring actuation, it recoils, driving pivot translation and contributing to rotation. We experimentally validate the model using a physical model. We then vary geometric parameters and the energy partition between the two springs to examine how these factors shape system dynamics. We show how variations in geometry and energy partition influence the rotational, translational, and coupling terms in the mathematical model. Finally, we demonstrate that the energetics of these systems must be carefully accounted for to accurately capture how potential energy is transformed into kinetic energy. We hypothesize that dual spring force couples in torque reversal systems may be prevalent in biological organisms, and that insights from this work can guide the design of spring-actuated mechanisms in robotics. 
    more » « less
  3. Multistable structures have widespread applications in the design of deployable aerospace systems, mechanical metamaterials, flexible electronics, and multimodal soft robotics due to their capability of shape reconfiguration between multiple stable states. Recently, the snap-folding of rings, often in the form of circles or polygons, has shown the capability of inducing diverse stable configurations. The natural curvature of the rod segment (curvature in its stress-free state) plays an important role in the elastic stability of these rings, determining the number and form of their stable configurations during folding. Here, we develop a general theoretical framework for the elastic stability analysis of segmented rings (e.g., polygons) based on an energy variational approach. Combining this framework with finite element simulations, we map out all planar stable configurations of various segmented rings and determine the natural curvature ranges of their multistable states. The theoretical and numerical results are validated through experiments, which demonstrate that a segmented ring with a rectangular cross-section can show up to six distinct planar stable states. The results also reveal that, by rationally designing the segment number and natural curvature of the segmented ring, its one- or multiloop configuration can store more strain energy than a circular ring of the same total length. We envision that the proposed strategy for achieving multistability in the current work will aid in the design of multifunctional, reconfigurable, and deployable structures. 
    more » « less
  4. Abstract Inspired by the recent success of buckling‐induced reconfigurable structures, a new class of deployable systems that harness buckling of curved beams upon a rotational input is proposed. First, experimental and numerical methods are combined to investigate the influence of the beam's geometric parameters on its non‐linear response. Then, it is shown that a wide range of deployable architectures can be realized by combining curved beams. Finally, the proposed principles are used to build deployable furniture such as tables and lamp shades that are flat/compact for transportation and storage, require simple or no assembly, and can be expanded by applying a simple rotational input. 
    more » « less
  5. Abstract This work harnesses interpretable machine learning methods to address the challenging inverse design problem of origami-inspired systems. We established a work flow based on decision tree-random forest method to fit origami databases, containing both design features and functional performance, and to generate human-understandable decision rules for the inverse design of functional origami. First, the tree method is unique because it can handle complex interactions between categorical features and continuous features, allowing it to compare different origami patterns for a design. Second, this interpretable method can tackle multi-objective problems for designing functional origami with multiple and multi-physical performance targets. Finally, the method can extend existing shape-fitting algorithms for origami to consider non-geometrical performance. The proposed framework enables holistic inverse design of origami, considering both shape and function, to build novel reconfigurable structures for various applications such as metamaterials, deployable structures, soft robots, biomedical devices, and many more. 
    more » « less