skip to main content


Title: Atomic protein structure refinement using all-atom graph representations and SE(3)-equivariant graph transformer
Abstract Motivation

The state-of-art protein structure prediction methods such as AlphaFold are being widely used to predict structures of uncharacterized proteins in biomedical research. There is a significant need to further improve the quality and nativeness of the predicted structures to enhance their usability. In this work, we develop ATOMRefine, a deep learning-based, end-to-end, all-atom protein structural model refinement method. It uses a SE(3)-equivariant graph transformer network to directly refine protein atomic coordinates in a predicted tertiary structure represented as a molecular graph.

Results

The method is first trained and tested on the structural models in AlphaFoldDB whose experimental structures are known, and then blindly tested on 69 CASP14 regular targets and 7 CASP14 refinement targets. ATOMRefine improves the quality of both backbone atoms and all-atom conformation of the initial structural models generated by AlphaFold. It also performs better than two state-of-the-art refinement methods in multiple evaluation metrics including an all-atom model quality score—the MolProbity score based on the analysis of all-atom contacts, bond length, atom clashes, torsion angles, and side-chain rotamers. As ATOMRefine can refine a protein structure quickly, it provides a viable, fast solution for improving protein geometry and fixing structural errors of predicted structures through direct coordinate refinement.

Availability and implementation

The source code of ATOMRefine is available in the GitHub repository (https://github.com/BioinfoMachineLearning/ATOMRefine). All the required data for training and testing are available at https://doi.org/10.5281/zenodo.6944368.

 
more » « less
Award ID(s):
1759934
NSF-PAR ID:
10414151
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
39
Issue:
5
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Proteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery.

    Results

    In this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures.

    Availability and implementation

    The source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA.

     
    more » « less
  2. Abstract Motivation

    Quality assessment (QA) of predicted protein tertiary structure models plays an important role in ranking and using them. With the recent development of deep learning end-to-end protein structure prediction techniques for generating highly confident tertiary structures for most proteins, it is important to explore corresponding QA strategies to evaluate and select the structural models predicted by them since these models have better quality and different properties than the models predicted by traditional tertiary structure prediction methods.

    Results

    We develop EnQA, a novel graph-based 3D-equivariant neural network method that is equivariant to rotation and translation of 3D objects to estimate the accuracy of protein structural models by leveraging the structural features acquired from the state-of-the-art tertiary structure prediction method—AlphaFold2. We train and test the method on both traditional model datasets (e.g. the datasets of the Critical Assessment of Techniques for Protein Structure Prediction) and a new dataset of high-quality structural models predicted only by AlphaFold2 for the proteins whose experimental structures were released recently. Our approach achieves state-of-the-art performance on protein structural models predicted by both traditional protein structure prediction methods and the latest end-to-end deep learning method—AlphaFold2. It performs even better than the model QA scores provided by AlphaFold2 itself. The results illustrate that the 3D-equivariant graph neural network is a promising approach to the evaluation of protein structural models. Integrating AlphaFold2 features with other complementary sequence and structural features is important for improving protein model QA.

    Availability and implementation

    The source code is available at https://github.com/BioinfoMachineLearning/EnQA.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Accurate modeling of protein–protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations.

    Results

    Here, we present PIQLE, a deep graph learning method for protein–protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual interactions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE.

    Availability and implementation

    An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-Lab/PIQLE.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less
  4. Abstract

    Protein structure prediction is an important problem in bioinformatics and has been studied for decades. However, there are still few open-source comprehensive protein structure prediction packages publicly available in the field. In this paper, we present our latest open-source protein tertiary structure prediction system—MULTICOM2, an integration of template-based modeling (TBM) and template-free modeling (FM) methods. The template-based modeling uses sequence alignment tools with deep multiple sequence alignments to search for structural templates, which are much faster and more accurate than MULTICOM1. The template-free (ab initio or de novo) modeling uses the inter-residue distances predicted by DeepDist to reconstruct tertiary structure models without using any known structure as template. In the blind CASP14 experiment, the average TM-score of the models predicted by our server predictor based on the MULTICOM2 system is 0.720 for 58 TBM (regular) domains and 0.514 for 38 FM and FM/TBM (hard) domains, indicating that MULTICOM2 is capable of predicting good tertiary structures across the board. It can predict the correct fold for 76 CASP14 domains (95% regular domains and 55% hard domains) if only one prediction is made for a domain. The success rate is increased to 3% for both regular and hard domains if five predictions are made per domain. Moreover, the prediction accuracy of the pure template-free structure modeling method on both TBM and FM targets is very close to the combination of template-based and template-free modeling methods. This demonstrates that the distance-based template-free modeling method powered by deep learning can largely replace the traditional template-based modeling method even on TBM targets that TBM methods used to dominate and therefore provides a uniform structure modeling approach to any protein. Finally, on the 38 CASP14 FM and FM/TBM hard domains, MULTICOM2 server predictors (MULTICOM-HYBRID, MULTICOM-DEEP, MULTICOM-DIST) were ranked among the top 20 automated server predictors in the CASP14 experiment. After combining multiple predictors from the same research group as one entry, MULTICOM-HYBRID was ranked no. 5. The source code of MULTICOM2 is freely available athttps://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.

     
    more » « less
  5. Abstract Motivation

    Deep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains. However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning methods in the field. Because interchain residue–residue contacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated convolutional residual network method (DRCon) to predict interchain residue–residue contacts in homodimers from residue–residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain residue–residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning, and other sequence and structural features.

    Results

    Tested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset and CASP-CAPRI dataset), the precision of DRCon for top L/5 interchain contact predictions (L: length of monomer in a homodimer) is 43.46%, 47.10% and 33.50% respectively at 6 Å contact threshold, which is substantially better than DeepHomo and DNCON2_inter and similar to Glinter. Moreover, our experiments demonstrate that using predicted tertiary structure or intrachain contacts of monomers in the unbound state as input, DRCon still performs well, even though its accuracy is lower than using true tertiary structures in the bound state are used as input. Finally, our case study shows that good interchain contact predictions can be used to build high-accuracy quaternary structure models of homodimers.

    Availability and implementation

    The source code of DRCon is available at https://github.com/jianlin-cheng/DRCon. The datasets are available at https://zenodo.org/record/5998532#.YgF70vXMKsB.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less