skip to main content


Title: Improving AlphaFold2-based protein tertiary structure prediction with MULTICOM in CASP15
Since the 14th Critical Assessment of Techniques for Protein Structure Prediction (CASP14), AlphaFold2 has become the standard method for protein tertiary structure prediction. One remaining challenge is to further improve its prediction. We developed a new version of the MULTICOM system to sample diverse multiple sequence alignments (MSAs) and structural templates to improve the input for AlphaFold2 to generate structural models. The models are then ranked by both the pairwise model similarity and AlphaFold2 self-reported model quality score. The top ranked models are refined by a novel structure alignment-based refinement method powered by Foldseek. Moreover, for a monomer target that is a subunit of a protein assembly (complex), MULTICOM integrates tertiary and quaternary structure predictions to account for tertiary structural changes induced by protein-protein interaction. The system participated in the tertiary structure prediction in 2022 CASP15 experiment. Our server predictor MULTICOM_refine ranked 3rd among 47 CASP15 server predictors and our human predictor MULTICOM ranked 7th among all 132 human and server predictors. The average GDT-TS score and TM-score of the first structural models that MULTICOM_refine predicted for 94 CASP15 domains are ~0.80 and ~0.92, 9.6% and 8.2% higher than ~0.73 and 0.85 of the standard AlphaFold2 predictor respectively.

 
more » « less
Award ID(s):
1759934 1763246
PAR ID:
10469163
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Communications Chemistry
Volume:
6
Issue:
1
ISSN:
2399-3669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Protein structure prediction is an important problem in bioinformatics and has been studied for decades. However, there are still few open-source comprehensive protein structure prediction packages publicly available in the field. In this paper, we present our latest open-source protein tertiary structure prediction system—MULTICOM2, an integration of template-based modeling (TBM) and template-free modeling (FM) methods. The template-based modeling uses sequence alignment tools with deep multiple sequence alignments to search for structural templates, which are much faster and more accurate than MULTICOM1. The template-free (ab initio or de novo) modeling uses the inter-residue distances predicted by DeepDist to reconstruct tertiary structure models without using any known structure as template. In the blind CASP14 experiment, the average TM-score of the models predicted by our server predictor based on the MULTICOM2 system is 0.720 for 58 TBM (regular) domains and 0.514 for 38 FM and FM/TBM (hard) domains, indicating that MULTICOM2 is capable of predicting good tertiary structures across the board. It can predict the correct fold for 76 CASP14 domains (95% regular domains and 55% hard domains) if only one prediction is made for a domain. The success rate is increased to 3% for both regular and hard domains if five predictions are made per domain. Moreover, the prediction accuracy of the pure template-free structure modeling method on both TBM and FM targets is very close to the combination of template-based and template-free modeling methods. This demonstrates that the distance-based template-free modeling method powered by deep learning can largely replace the traditional template-based modeling method even on TBM targets that TBM methods used to dominate and therefore provides a uniform structure modeling approach to any protein. Finally, on the 38 CASP14 FM and FM/TBM hard domains, MULTICOM2 server predictors (MULTICOM-HYBRID, MULTICOM-DEEP, MULTICOM-DIST) were ranked among the top 20 automated server predictors in the CASP14 experiment. After combining multiple predictors from the same research group as one entry, MULTICOM-HYBRID was ranked no. 5. The source code of MULTICOM2 is freely available athttps://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.

     
    more » « less
  2. Abstract

    Substantial progresses in protein structure prediction have been made by utilizing deep‐learning and residue‐residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by incorporating three new components: (a) a new deep learning‐based protein inter‐residue distance predictor to improve template‐free (ab initio) tertiary structure prediction, (b) an enhanced template‐based tertiary structure prediction method, and (c) distance‐based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked seventh out of 146 predictors in tertiary structure prediction and ranked third out of 136 predictors in inter‐domain structure prediction. The results demonstrate that the template‐free modeling based on deep learning and residue‐residue distance prediction can predict the correct topology for almost all template‐based modeling targets and a majority of hard targets (template‐free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. Moreover, the template‐free modeling performs better than the template‐based modeling on not only hard targets but also the targets that have homologous templates. The performance of the template‐free modeling largely depends on the accuracy of distance prediction closely related to the quality of multiple sequence alignments. The structural model quality assessment works well on targets for which enough good models can be predicted, but it may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed. MULTICOM is available athttps://github.com/jianlin-cheng/MULTICOM_Human_CASP14/tree/CASP14_DeepRank3andhttps://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.

     
    more » « less
  3. null (Ed.)
    Abstract The inter-residue contact prediction and deep learning showed the promise to improve the estimation of protein model accuracy (EMA) in the 13th Critical Assessment of Protein Structure Prediction (CASP13). To further leverage the improved inter-residue distance predictions to enhance EMA, during the 2020 CASP14 experiment, we integrated several new inter-residue distance features with the existing model quality assessment features in several deep learning methods to predict the quality of protein structural models. According to the evaluation of performance in selecting the best model from the models of CASP14 targets, our three multi-model predictors of estimating model accuracy (MULTICOM-CONSTRUCT, MULTICOM-AI, and MULTICOM-CLUSTER) achieve the averaged loss of 0.073, 0.079, and 0.081, respectively, in terms of the global distance test score (GDT-TS). The three methods are ranked first, second, and third out of all 68 CASP14 predictors. MULTICOM-DEEP, the single-model predictor of estimating model accuracy (EMA), is ranked within top 10 among all the single-model EMA methods according to GDT-TS score loss. The results demonstrate that inter-residue distance features are valuable inputs for deep learning to predict the quality of protein structural models. However, larger training datasets and better ways of leveraging inter-residue distance information are needed to fully explore its potentials. 
    more » « less
  4. Abstract

    Leveraging iterative alignment search through genomic and metagenome sequence databases, we report the DeepMSA2 pipeline for uniform protein single- and multichain multiple-sequence alignment (MSA) construction. Large-scale benchmarks show that DeepMSA2 MSAs can remarkably increase the accuracy of protein tertiary and quaternary structure predictions compared with current state-of-the-art methods. An integrated pipeline with DeepMSA2 participated in the most recent CASP15 experiment and created complex structural models with considerably higher quality than the AlphaFold2-Multimer server (v.2.2.0). Detailed data analyses show that the major advantage of DeepMSA2 lies in its balanced alignment search and effective model selection, and in the power of integrating huge metagenomics databases. These results demonstrate a new avenue to improve deep learning protein structure prediction through advanced MSA construction and provide additional evidence that optimization of input information to deep learning-based structure prediction methods must be considered with as much care as the design of the predictor itself.

     
    more » « less
  5. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Accurate prediction of residue-residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep residual neural networks with the channel-wise attention mechanism to classify the distance between every two residues into multiple distance intervals. The input features for the deep learning method include co-evolutionary features as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three alignment methods are used with multiple protein sequence/profile databases to generate MSAs for input feature generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM distance predictors were created to participate in the CASP14 experiment. Results Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 distance prediction method. The best performing MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance intervals defined by CASP14 according to the precision of distance classification. The results show that the quality and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the accuracy of distance prediction. Using larger training datasets and multiple complementary features improves prediction accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of contact/distance predictions and the average probability of the predicted contacts, which can therefore be more effectively used to estimate the confidence of distance predictions and select predicted distance maps. Availability The software package, source code, and data of DeepDist2 are freely available at https://github.com/multicom-toolbox/deepdist and https://zenodo.org/record/4712084#.YIIM13VKhQM. 
    more » « less