Summary Pluripotency, the ability of cells to self-renew and differentiate into all the cell types in an animal’s body, is vital for mammalian early development. This study presented a comprehensive comparative transcriptomic analysis of embryonic stem cells across multiple mammalian species, defining their progression through expanded/extended, naïve, formative, and primed pluripotency states. Our findings revealed both conserved and species-specific mechanisms underlying pluripotency regulation. We also emphasized the limitations of existing state-specific markers and their limited cross-species applicability, while identifyingde novopluripotency markers that can inform future research. Despite variability in gene expression dynamics, gene co-expression networks showed remarkable conservation across species. Among pluripotency states, the primed state demonstrated the highest conservation, evidenced by shared markers, preserved gene networks, and stronger selective pressures acting on its genes. These findings provide critical insights into the evolution and regulation of pluripotency, laying a foundation for refining stem cell models to enhance their translational potential in regenerative medicine, agriculture, and conservation biology. 
                        more » 
                        « less   
                    
                            
                            BENDing with Polycomb in pluripotency and cancer
                        
                    
    
            Abstract Three recent publications on BEND3 firmly establish its role as a novel sequence‐specific transcription factor that is essential for PRC2 recruitment and maintenance of pluripotency. Here, we briefly review our current understanding of the BEND3‐PRC2 axis in the regulation of pluripotency and also explore the possibility of a similar connection in cancer. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10414155
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- BioEssays
- Volume:
- 45
- Issue:
- 8
- ISSN:
- 0265-9247
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Insight into the molecular mechanisms governing the development and maintenance of pluripotency is important for understanding early development and the use of stem cells in regenerative medicine. We demonstrate the selective inhibition of mTORC1 signaling is important for developing the inner cell mass (ICM) and the self-renewal of human embryonic stem cells. S6K suppressed the expression and function of pluripotency-related transcription factors (PTFs) OCT4, SOX2, and KLF4 through phosphorylation and ubiquitin proteasome-mediated protein degradation, indicating that S6K inhibition is required for pluripotency. PTFs inhibited mTOR signaling. The phosphorylation of S6 was decreased in PTF-positive cells of the ICM in embryos. Activation of mTORC1 signaling blocked ICM formation and the selective inhibition of S6K by rapamycin increased the ICM size in mouse blastocysts. Thus, selective inhibition of mTORC1 signaling supports the development and maintenance of pluripotency.more » « less
- 
            Abstract Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that methylates histone H3 at Lysine 27. PRC2 is critical for epigenetic gene silencing, cellular differentiation and the formation of facultative heterochromatin. It can also promote or inhibit oncogenesis. Despite this importance, the molecular mechanisms by which PRC2 compacts chromatin are relatively understudied. Here, we visualized the binding of PRC2 to naked DNA in liquid at the single-molecule level using atomic force microscopy. Analysis of the resulting images showed PRC2, consisting of five subunits (EZH2, EED, SUZ12, AEBP2 and RBBP4), bound to a 2.5-kb DNA with an apparent dissociation constant ($$K_{\rm{D}}^{{\rm{app}}}$$) of 150 ± 12 nM. PRC2 did not show sequence-specific binding to a region of high GC content (76%) derived from a CpG island embedded in such a long DNA substrate. At higher concentrations, PRC2 compacted DNA by forming DNA loops typically anchored by two or more PRC2 molecules. Additionally, PRC2 binding led to a 3-fold increase in the local bending of DNA’s helical backbone without evidence of DNA wrapping around the protein. We suggest that the bending and looping of DNA by PRC2, independent of PRC2’s methylation activity, may contribute to heterochromatin formation and therefore epigenetic gene silencing.more » « less
- 
            Abstract During early development, sea lamprey embryos undergo programmatic elimination of DNA from somatic progenitor cells in a process termed programmed genome rearrangement (PGR). Eliminated DNA eventually becomes condensed into micronuclei, which are then physically degraded and permanently lost from the cell. Previous studies indicated that many of the genes eliminated during PGR have mammalian homologs that are bound by polycomb repressive complex (PRC) in embryonic stem cells. To test whether PRC components play a role in the faithful elimination of germline‐specific sequences, we used a combination of CRISPR/Cas9 and lightsheet microscopy to investigate the impact of gene knockouts on early development and the progression through stages of DNA elimination. Analysis of knockout embryos for the core PRC2 subunits EZH, SUZ12, and EED show that disruption of all three genes results in an increase in micronucleus number, altered distribution of micronuclei within embryos, and an increase in micronucleus volume in mutant embryos. While the upstream events of DNA elimination are not strongly impacted by loss of PRC2 components, this study suggests that PRC2 plays a role in the later stages of elimination related to micronucleus condensation and degradation. These findings also suggest that other genes/epigenetic pathways may work in parallel during DNA elimination to mediate chromatin structure, accessibility, and the ultimate loss of germline‐specific DNA.more » « less
- 
            Abstract Introduction The Polycomb group (PcG) is an important family of transcriptional regulators that controls growth and tumorigenesis. The PcG mainly consists of two complexes, PRC1 and Polycomb Repressive Complex 2 (PRC2). Polycomb-like 2 (PCL2) is known to interact with the PRC2 protein. The role of PCL2 in the development and progression of glioma is unclear. Methods We use The Cancer Genome Atlas (TCGA) database to detect the expression of PCL2 in various tumors. 117 cases of clinical glioma (WHOI–IV) were collected, and PCL2 expression and localization were detected by immunohistochemical staining. Glioma cells U87/U251 were infected with overexpressed and interfered PCL2. CCK8 assay, colony formation assay, EdU method, cell cycle and apoptosis were used to detect cell proliferation and apoptosis. Western blot was used to detect the expression of PRC2-related core proteins. After DZNeP intervention, PRC2 protein expression was again measured to discuss the mechanism of PCL2 action. Results TCGA database results and immunohistochemical staining results suggest that PCL2 is highly expressed in gliomas. We found that the PCL2 gene promoted tumor cell proliferation, enhanced the colony formation ability, and increased S phase in the cell cycle. The overexpression of PCL2 upregulated the expression levels of EZH2 and EED (two core members of PRC2), decreased the expression of SUZ12, increased the level of H3K27 trimethylation (H3K27me3), H3K4 dimethylation (H3K4me2), and decreased H3K9 dimethylation (H3K9me2). The result after interfering with PCL2 was the opposite. Conclusions As an important accessory protein of PRC2, PCL2 can not only change the expression of PRC2 components, but also affect the expression level of Histone methylation. Therefore, PCL2 may be an important hub for regulating the synergy among PRC2 members. This study revealed PCL2 as a new target for tumor research and open up a new avenue for future research in glioma.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
