Abstract Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identifyKCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vmand thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion ofkcnh6leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vmusing a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.
more »
« less
Selective Inhibition of mTORC1 Signaling Supports the Development and Maintenance of Pluripotency
Abstract Insight into the molecular mechanisms governing the development and maintenance of pluripotency is important for understanding early development and the use of stem cells in regenerative medicine. We demonstrate the selective inhibition of mTORC1 signaling is important for developing the inner cell mass (ICM) and the self-renewal of human embryonic stem cells. S6K suppressed the expression and function of pluripotency-related transcription factors (PTFs) OCT4, SOX2, and KLF4 through phosphorylation and ubiquitin proteasome-mediated protein degradation, indicating that S6K inhibition is required for pluripotency. PTFs inhibited mTOR signaling. The phosphorylation of S6 was decreased in PTF-positive cells of the ICM in embryos. Activation of mTORC1 signaling blocked ICM formation and the selective inhibition of S6K by rapamycin increased the ICM size in mouse blastocysts. Thus, selective inhibition of mTORC1 signaling supports the development and maintenance of pluripotency.
more »
« less
- Award ID(s):
- 2026049
- PAR ID:
- 10485727
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Stem Cells
- Volume:
- 42
- Issue:
- 1
- ISSN:
- 1066-5099
- Format(s):
- Medium: X Size: p. 13-28
- Size(s):
- p. 13-28
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Pluripotency, the ability of cells to self-renew and differentiate into all the cell types in an animal’s body, is vital for mammalian early development. This study presented a comprehensive comparative transcriptomic analysis of embryonic stem cells across multiple mammalian species, defining their progression through expanded/extended, naïve, formative, and primed pluripotency states. Our findings revealed both conserved and species-specific mechanisms underlying pluripotency regulation. We also emphasized the limitations of existing state-specific markers and their limited cross-species applicability, while identifyingde novopluripotency markers that can inform future research. Despite variability in gene expression dynamics, gene co-expression networks showed remarkable conservation across species. Among pluripotency states, the primed state demonstrated the highest conservation, evidenced by shared markers, preserved gene networks, and stronger selective pressures acting on its genes. These findings provide critical insights into the evolution and regulation of pluripotency, laying a foundation for refining stem cell models to enhance their translational potential in regenerative medicine, agriculture, and conservation biology.more » « less
-
Abstract Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in theNpc1orNpc2genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using theNpc1nmf164mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found inNpc1-deficient mice. However, in contrast toNpc1nmf164mice,Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.more » « less
-
Crosstalk between ERK and MRTF‐A signaling regulates TGFβ1‐induced epithelial‐mesenchymal transitionAbstract Epithelial‐mesenchymal transition (EMT) is a physiological process that is essential during embryogenesis and wound healing and also contributes to pathologies including fibrosis and cancer. EMT is characterized by marked gene expression changes, loss of cell–cell contacts, remodeling of the cytoskeleton, and acquisition of enhanced motility. In the late stages of EMT, cells can exhibit myofibroblast‐like properties with enhanced expression of the mesenchymal protein marker α‐smooth muscle actin and contractile activity. Transforming growth factor (TGF)‐β1 is a well‐known inducer of EMT and it activates a plethora of signaling cascades including extracellular signal‐regulated kinase (ERK). Previous reports have demonstrated a role for ERK signaling in the early stages of EMT, but the molecular impacts of ERK signaling on the late stages of EMT are still unknown. Here, we found that inhibition of the phosphorylation of ERK enhances focal adhesions, stress fiber formation, cell contractility, and gene expression changes associated with TGFβ1‐induced EMT in mammary epithelial cells. These effects are mediated in part by the phosphorylation state and subcellular localization of myocardin‐related transcription factor‐A. These findings indicate that the intricate crosstalk between signaling cascades plays an important role in regulating the progression of EMT and suggests new approaches to control EMT processes.more » « less
-
Abstract Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)‐derived therapeutics. Toward this end, we demonstrate the xeno‐free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin‐producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+/SOX17+cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10‐ to 12‐fold increase in cell number over 5–6 days with the maintenance of pluripotency (>85% OCT4+) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+/SOX17+cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno‐free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell‐derived therapeutics.more » « less
An official website of the United States government
