Summary Microbial communities can rapidly respond to stress, meaning plants may encounter altered soil microbial communities in stressful environments. These altered microbial communities may then affect natural selection on plants. Because stress can cause lasting changes to microbial communities, microbes may also cause legacy effects on plant selection that persist even after the stress ceases.To explore how microbial responses to stress and persistent microbial legacy effects of stress affect natural selection, we grewChamaecrista fasciculataplants in stressful (salt, herbicide, or herbivory) or nonstressful conditions with microbes that had experienced each of these environments in the previous generation.Microbial community responses to stress generally counteracted the effects of stress itself on plant selection, thereby weakening the strength of stress as a selective agent. Microbial legacy effects of stress altered plant selection in nonstressful environments, suggesting that stress‐induced changes to microbes may continue to affect selection after stress is lifted.These results suggest that soil microbes may play a cryptic role in plant adaptation to stress, potentially reducing the strength of stress as a selective agent and altering the evolutionary trajectory of plant populations. 
                        more » 
                        « less   
                    
                            
                            Ecological strategies of microbes: Thinking outside the triangle
                        
                    
    
            Abstract I asked whether Grime's triangle of competitive, stress tolerance and ruderal ecological strategies—which was originally developed for plants—applies to microbes.I conducted a synthesis of empirical studies that tested relationships among microbial traits presumed to define the competitive, stress tolerance and ruderal, and other ecological strategies.There was broad support for Grime's triangle. However, the ecological strategies were inconsistently linked to shifts in microbial communities under environmental changes like nitrogen and phosphorus addition, warming, drought, etc. We may be missing important ecological strategies that more closely influence microbial community composition under shifting environmental conditions.We may need to start by documenting changes in microbial communities in response to environmental conditions at fine spatiotemporal scales relevant for microbes. We can then develop empirically based ecological strategies, rather than modifying those based on plant ecology.Synthesis. Microbes appear to sort into similar ecological strategies as plants. However, these microbial ecological strategies do not consistently predict how community composition will shift under environmental change. By starting ‘from the ground up’, we may be able to delineate ecological strategies more relevant for microbes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1912525
- PAR ID:
- 10414202
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 111
- Issue:
- 9
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- p. 1832-1843
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress‐induced changes in soil microbial communities.To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant.Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution.Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.more » « less
- 
            Summary Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal‐mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.We compared the effects of host‐plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars ofEpilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.more » « less
- 
            Summary Microbial nitrogen (N) fixation accounts forc. 97% of natural N inputs to terrestrial ecosystems. These microbes can be free‐living in the soil and leaf litter (asymbiotic) or in symbiosis with plants. Warming is expected to increase N‐fixation rates because warmer temperatures favor the growth and activity of N‐fixing microbes.We investigated the effects of warming on asymbiotic components of N fixation at a field warming experiment in Puerto Rico. We analyzed the function and composition of bacterial communities from surface soil and leaf litter samples.Warming significantly increased asymbiotic N‐fixation rates in soil by 55% (to 0.002 kg ha−1 yr−1) and by 525% in leaf litter (to 14.518 kg ha−1 yr−1). This increase in N fixation was associated with changes in the N‐fixing bacterial community composition and soil nutrients.Our findings suggest that warming increases the natural N inputs from the atmosphere into this tropical forest due to changes in microbial function and composition, especially in the leaf litter. Given the importance of leaf litter in nutrient cycling, future research should investigate other aspects of N cycles in the leaf litter under warming conditions.more » « less
- 
            Abstract Nutrient enrichment impacts ecosystems globally. Population history, especially past resource environments, of numerically dominant plant species may affect their responses to subsequent changes in nutrient availability. Eutrophication can also alter plant–microbe interactions via direct effects on associated microbial communities or indirect effects on dominant species’ biomass production/allocation as a result of modified plant–soil interactions.We combined a greenhouse common garden and a field reciprocal transplant of a salt marsh foundation species (Spartina alterniflora) within a long‐term, whole‐ecosystem, nutrient‐enrichment study to determine whether enrichment affects plant production and microbial community structure differently depending on plant population history. For the greenhouse portion, we collected 20S. alternifloragenotypes—10 from an enriched creek that had received elevated nutrient inputs for 10 years and 10 from an unenriched reference creek—and reared them in a common garden for 1 year. For the field portion, we conducted a 2‐year, fully crossed reciprocal transplant experiment with two gardens each at the enriched and unenriched sites; we examined the effects of source site (i.e. population history), garden site and plant genotype.After 2 years, plants in enriched gardens had higher above‐ground biomass and altered below‐ground allocation compared to plants in unenriched gardens. However, performance also depended on plant population history: plants from the enriched site had decreased above‐ground and rhizome production compared to plants from the unenriched site, most notably in unenriched gardens. In addition, almost all above‐ and below‐ground traits varied depending on plant genotypic identity.Effects of nutrient enrichment on the associated microbial community were also pronounced. Following 1 year in common garden, microbial community structure varied by plant population history andS. alternifloragenotypic identity. However, at the end of the reciprocal transplant, microbial communities differed primarily between enriched and unenriched gardens.Synthesis. Nutrient enrichment can impact plant foundation species and associated soil microbes in the short term. Most importantly, nutrient enrichment can also have long‐lasting effects on plant populations and associated microbial communities that potentially compromise their ability to respond to changing resource conditions in the future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
