skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal models with constraints
Causal models have proven extremely useful in offering formal representations of causal relationships between a set of variables. Yet in many situations, there are non-causal relationships among variables. For example, we may want variables LDL, HDL, and TOT that represent the level of low-density lipoprotein cholesterol, the level of lipoprotein high-density lipoprotein cholesterol, and total cholesterol level, with the relation LDL+HDL=\OT. This cannot be done in standard causal models, because we can intervene simultaneously on all three variables. The goal of this paper is to extend standard causal models to allow for constraints on settings of variables. Although the extension is relatively straightforward, to make it useful we have to define a new intervention operation that disconnects a variable from a causal equation. We give examples showing the usefulness of this extension, and provide a sound and complete axiomatization for causal models with constraints.  more » « less
Award ID(s):
1703846
PAR ID:
10414207
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Second Conference on Causal Learning and Reasoning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanolipoprotein particles (NLPs), also called “nanodiscs”, are discoidal particles with a patch of lipid bilayer corralled by apolipoproteins. NLPs have long been of interest due to both their utility as membrane-model systems into which membrane proteins can be inserted and solubilized and their physiological role in lipid and cholesterol transport via high-density lipoprotein (HDL) and low-density lipoprotein (LDL) maturation, which are important for human health. Serial femtosecond crystallography (SFX) at X-ray free electron lasers (XFELs) is a powerful approach for structural biology of membrane proteins, which are traditionally difficult to crystallize as large single crystals capable of producing high-quality diffraction suitable for structure determination. To facilitate understanding of the specific role of two apolipoprotein/lipid complexes, ApoA1 and ApoE4, in lipid binding and HDL/LDL particle maturation dynamics, and to develop new SFX methods involving NLP membrane protein encapsulation, we have prepared and crystallized homogeneous populations of ApoA1 and ApoE4 NLPs. Crystallization of empty NLPs yields semi-ordered objects that appear crystalline and give highly anisotropic and diffuse X-ray diffraction, similar to fiber diffraction. Several unit cell parameters were approximately determined for both NLPs from these measurements. Thus, low-background, sample conservative methods of delivery are critical. Here we implemented a fixed target sample delivery scheme utilizing the Roadrunner fast-scanning system and ultra-thin polymer/graphene support films, providing a low-volume, low-background approach to membrane protein SFX. This study represents initial steps in obtaining structural information for ApoA1 and ApoE4 NLPs and developing this system as a supporting scaffold for future structural studies of membrane proteins crystalized in a native lipid environment. 
    more » « less
  2. null (Ed.)
    The low-density lipoprotein receptor (LDLR) is key to cellular cholesterol uptake and is also the main receptor for the vesicular stomatitis virus glycoprotein (VSV G). Here we show that in songbirds LDLR is highly divergent and lacks domains critical for ligand binding and cellular trafficking, inconsistent with universal structure conservation and function across vertebrates. Linked to the LDLR functional domain loss, zebra finches show inefficient infectivity by lentiviruses (LVs) pseudotyped with VSV G, which can be rescued by the expression of human LDLR. Finches also show an atypical plasma lipid distribution that relies largely on high-density lipoprotein (HDL). These findings provide insights into the genetics and evolution of viral infectivity and cholesterol transport mechanisms in vertebrates. 
    more » « less
  3. Japanese adults typically have healthier lipid profiles than American and European adults and a lower prevalence and later onset of atherosclerotic cardiovascular disease (ASCVD). Many Japanese also have uniquely elevated levels of high-density lipoprotein cholesterol (HDL-C). The following analysis examined the relationship between HDL-C level and HDL-C peroxide content, a bioindicator of unhealthy lipid metabolism in Japanese adults. Blood samples were collected from 463 participants, 31–84 years of age, who lived in Tokyo. A second blood sample was collected 5 years later from 241 of the participants, allowing us to evaluate the temporal stability of the inverse correlation between HDL-C level and HDL-C peroxide content. Glucoregulation and inflammatory activity were assessed because both can be associated with dyslipidemia and HDL-C dysfunction. Obesity and central adiposity were also considered. Overall, women had healthier HDL-C profiles than men. Elevated HDL-C (>90 mg/dL) was common (16.6%) and found more often in women. Higher HDL-C peroxide content was associated with older age and central adiposity and incremented further when HA1c and CRP were higher. When assessed 5 years later, lower HDL-C peroxide content continued to be evident in adults with higher HDL-C. While similar associations have been described for other populations, most Japanese adults typically had healthier levels of HDL-C with lower HDL-C peroxide content than previously reported for American adults. 
    more » « less
  4. Zeggini, Eleftheria (Ed.)
    Increasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants associated with many complex traits, motivating the development of “fine mapping” methods to identify which of the associated variants are causal. Additionally, GWAS of the same trait for different populations are increasingly available, raising the possibility of refining fine mapping results further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we introduce multiple study causal variants identification in associated regions (MsCAVIAR), a method that extends the popular CAVIAR fine mapping framework to a multiple study setting using a random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for uncertainty in association statistics using a multivariate normal model, allows for multiple causal variants at a locus, and explicitly models the possibility of different SNP effect sizes in different populations. We demonstrate the efficacy of MsCAVIAR in both a simulation study and a trans-ethnic, trans-biobank fine mapping analysis of High Density Lipoprotein (HDL). 
    more » « less
  5. Low socioeconomic status (SES) and living in a disadvantaged neighborhood are associated with poor cardiovascular health. Multiple lines of evidence have linked DNA methylation to both cardiovascular risk factors and social disadvantage indicators. However, limited research has investigated the role of DNA methylation in mediating the associations of individual- and neighborhood-level disadvantage with multiple cardiovascular risk factors in large, multi-ethnic, population-based cohorts. We examined whether disadvantage at the individual level (childhood and adult SES) and neighborhood level (summary neighborhood SES as assessed by Census data and social environment as assessed by perceptions of aesthetic quality, safety, and social cohesion) were associated with 11 cardiovascular risk factors including measures of obesity, diabetes, lipids, and hypertension in 1,154 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). For significant associations, we conducted epigenome-wide mediation analysis to identify methylation sites mediating the relationship between individual/neighborhood disadvantage and cardiovascular risk factors using the JT-Comp method that assesses sparse mediation effects under a composite null hypothesis. In models adjusting for age, sex, race/ethnicity, smoking, medication use, and genetic principal components of ancestry, epigenetic mediation was detected for the associations of adult SES with body mass index (BMI), insulin, and high-density lipoprotein cholesterol (HDL-C), as well as for the association between neighborhood socioeconomic disadvantage and HDL-C at FDRq< 0.05. The 410 CpG mediators identified for the SES-BMI association were enriched for CpGs associated with gene expression (expression quantitative trait methylation loci, or eQTMs), and corresponding genes were enriched in antigen processing and presentation pathways. For cardiovascular risk factors other than BMI, most of the epigenetic mediators lost significance after controlling for BMI. However, 43 methylation sites showed evidence of mediating the neighborhood socioeconomic disadvantage and HDL-C association after BMI adjustment. The identified mediators were enriched for eQTMs, and corresponding genes were enriched in inflammatory and apoptotic pathways. Our findings support the hypothesis that DNA methylation acts as a mediator between individual- and neighborhood-level disadvantage and cardiovascular risk factors, and shed light on the potential underlying epigenetic pathways. Future studies are needed to fully elucidate the biological mechanisms that link social disadvantage to poor cardiovascular health. 
    more » « less