Title: Identifying causal variants by fine mapping across multiple studies
Increasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants associated with many complex traits, motivating the development of “fine mapping” methods to identify which of the associated variants are causal. Additionally, GWAS of the same trait for different populations are increasingly available, raising the possibility of refining fine mapping results further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we introduce multiple study causal variants identification in associated regions (MsCAVIAR), a method that extends the popular CAVIAR fine mapping framework to a multiple study setting using a random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for uncertainty in association statistics using a multivariate normal model, allows for multiple causal variants at a locus, and explicitly models the possibility of different SNP effect sizes in different populations. We demonstrate the efficacy of MsCAVIAR in both a simulation study and a trans-ethnic, trans-biobank fine mapping analysis of High Density Lipoprotein (HDL). more »« less
Hormozdiari, Farhad; Jung, Junghyun; Eskin, Eleazar; J. Joo, Jong Wha
(, Genome Biology)
null
(Ed.)
Abstract In standard genome-wide association studies (GWAS), the standard association test is underpowered to detect associations between loci with multiple causal variants with small effect sizes. We propose a statistical method, Model-based Association test Reflecting causal Status (MARS), that finds associations between variants in risk loci and a phenotype, considering the causal status of variants, only requiring the existing summary statistics to detect associated risk loci. Utilizing extensive simulated data and real data, we show that MARS increases the power of detecting true associated risk loci compared to previous approaches that consider multiple variants, while controlling the type I error.
Morris, John A.; Caragine, Christina; Daniloski, Zharko; Domingo, Júlia; Barry, Timothy; Lu, Lu; Davis, Kyrie; Ziosi, Marcello; Glinos, Dafni A.; Hao, Stephanie; et al
(, Science)
INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks.
Abstract MotivationWe introduce a novel framework BEATRICE to identify putative causal variants from GWAS statistics. Identifying causal variants is challenging due to their sparsity and high correlation in the nearby regions. To account for these challenges, we rely on a hierarchical Bayesian model that imposes a binary concrete prior on the set of causal variants. We derive a variational algorithm for this fine-mapping problem by minimizing the KL divergence between an approximate density and the posterior probability distribution of the causal configurations. Correspondingly, we use a deep neural network as an inference machine to estimate the parameters of our proposal distribution. Our stochastic optimization procedure allows us to sample from the space of causal configurations, which we use to compute the posterior inclusion probabilities and determine credible sets for each causal variant. We conduct a detailed simulation study to quantify the performance of our framework against two state-of-the-art baseline methods across different numbers of causal variants and noise paradigms, as defined by the relative genetic contributions of causal and noncausal variants. ResultsWe demonstrate that BEATRICE achieves uniformly better coverage with comparable power and set sizes, and that the performance gain increases with the number of causal variants. We also show the efficacy BEATRICE in finding causal variants from the GWAS study of Alzheimer’s disease. In comparison to the baselines, only BEATRICE can successfully find the APOE ϵ2 allele, a commonly associated variant of Alzheimer’s. Availability and implementationBEATRICE is available for download at https://github.com/sayangsep/Beatrice-Finemapping.
Benaglio, Paola; D’Antonio-Chronowska, Agnieszka; Ma, Wubin; Yang, Feng; Young Greenwald, William W.; Donovan, Margaret K.; DeBoever, Christopher; Li, He; Drees, Frauke; Singhal, Sanghamitra; et al
(, Nature Genetics)
The cardiac transcription factor (TF) gene NKX2-5 has been associated with electrocardiographic (EKG) traits through genome-wide association studies (GWASs), but the extent to which differential binding of NKX2-5 at common regulatory variants contributes to these traits has not yet been studied. We analyzed transcriptomic and epigenomic data from induced pluripotent stem cell-derived cardiomyocytes from seven related individuals, and identified ~2,000 single-nucleotide variants associated with allele-specific effects (ASE-SNVs) on NKX2-5 binding. NKX2-5 ASE-SNVs were enriched for altered TF motifs, for heart-specific expression quantitative trait loci and for EKG GWAS signals. Using fine-mapping combined with epigenomic data from induced pluripotent stem cell–derived cardiomyocytes, we prioritized candidate causal variants for EKG traits, many of which were NKX2-5 ASE-SNVs. Experimentally characterizing two NKX2-5 ASE-SNVs (rs3807989 and rs590041) showed that they modulate the expression of target genes via differential protein binding in cardiac cells, indicating that they are functional variants underlying EKG GWAS signals. Our results show that differential NKX2-5 binding at numerous regulatory variants across the genome contributes to EKG phenotypes.
Fernandes, Samuel B.; Zhang, Kevin S.; Jamann, Tiffany M.; Lipka, Alexander E.
(, Frontiers in Genetics)
null
(Ed.)
Quantification of the simultaneous contributions of loci to multiple traits, a phenomenon called pleiotropy, is facilitated by the increased availability of high-throughput genotypic and phenotypic data. To understand the prevalence and nature of pleiotropy, the ability of multivariate and univariate genome-wide association study (GWAS) models to distinguish between pleiotropic and non-pleiotropic loci in linkage disequilibrium (LD) first needs to be evaluated. Therefore, we used publicly available maize and soybean genotypic data to simulate multiple pairs of traits that were either (i) controlled by quantitative trait nucleotides (QTNs) on separate chromosomes, (ii) controlled by QTNs in various degrees of LD with each other, or (iii) controlled by a single pleiotropic QTN. We showed that multivariate GWAS could not distinguish between QTNs in LD and a single pleiotropic QTN. In contrast, a unique QTN detection rate pattern was observed for univariate GWAS whenever the simulated QTNs were in high LD or pleiotropic. Collectively, these results suggest that multivariate and univariate GWAS should both be used to infer whether or not causal mutations underlying peak GWAS associations are pleiotropic. Therefore, we recommend that future studies use a combination of multivariate and univariate GWAS models, as both models could be useful for identifying and narrowing down candidate loci with potential pleiotropic effects for downstream biological experiments.
@article{osti_10438989,
place = {Country unknown/Code not available},
title = {Identifying causal variants by fine mapping across multiple studies},
url = {https://par.nsf.gov/biblio/10438989},
DOI = {10.1371/journal.pgen.1009733},
abstractNote = {Increasingly large Genome-Wide Association Studies (GWAS) have yielded numerous variants associated with many complex traits, motivating the development of “fine mapping” methods to identify which of the associated variants are causal. Additionally, GWAS of the same trait for different populations are increasingly available, raising the possibility of refining fine mapping results further by leveraging different linkage disequilibrium (LD) structures across studies. Here, we introduce multiple study causal variants identification in associated regions (MsCAVIAR), a method that extends the popular CAVIAR fine mapping framework to a multiple study setting using a random effects model. MsCAVIAR only requires summary statistics and LD as input, accounts for uncertainty in association statistics using a multivariate normal model, allows for multiple causal variants at a locus, and explicitly models the possibility of different SNP effect sizes in different populations. We demonstrate the efficacy of MsCAVIAR in both a simulation study and a trans-ethnic, trans-biobank fine mapping analysis of High Density Lipoprotein (HDL).},
journal = {PLOS Genetics},
volume = {17},
number = {9},
author = {LaPierre, Nathan and Taraszka, Kodi and Huang, Helen and He, Rosemary and Hormozdiari, Farhad and Eskin, Eleazar},
editor = {Zeggini, Eleftheria}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.