skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Target Capture Methods Offer Insight into the Evolution of Rapidly Diverged Taxa and Resolve Allopolyploid Homeologs in the Fern Genus Polypodium s.s.
Abstract— Like many fern lineages comprising reticulate species complexes, Polypodium s.s. (Polypodiacaeae) has a history shaped by rapid diversification, hybridization, and polyploidy that poses substantial challenges for phylogenetic inference with plastid and single-locus nuclear markers. Using target capture probes for 408 nuclear loci developed by the GoFlag project and a custom bioinformatic pipeline, SORTER, we constructed multi-locus nuclear datasets for diploid temperate and Mesoamerican species of Polypodium and five allotetraploid species belonging to the well-studied Polypodium vulgare complex. SORTER employs a clustering approach to separate putatively paralogous copies of targeted loci into orthologous matrices and haplotype phasing to infer allopolyploid haplotypes across loci, resulting in datasets amenable to both concatenated maximum likelihood and multi-species coalescent phylogenetic analyses. By comparing phylogenies derived from maximum likelihood and multi-species coalescent analyses of unphased and phased datasets, as well as evaluating discordance among gene trees and species trees, we recover support for incomplete lineage sorting within Polypodium s.s., novel relationships among diploid taxa of the Polypodium vulgare complex and its Mesoamerican sister clade, and the placement of several Polypodium species within other genera. Additionally, we were able to infer well-supported phylogenies that identified the hypothesized progenitors of the allotetraploid species, indicating that SORTER is an effective and accurate tool for reconstructing homeolog haplotypes of allopolyploids in fern taxa and other non-model organisms from target capture data.  more » « less
Award ID(s):
1920858
PAR ID:
10414242
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Systematic Botany
Volume:
48
Issue:
1
ISSN:
0363-6445
Page Range / eLocation ID:
96 to 109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A phylogenomic analysis of the so far phylogenetically unresolved subfamily Bromelioideae (Bromeliaceae) was performed to infer species relationships as the basis for future taxonomic treatment, stabilization of generic concept, and further analyses of evolution and biogeography of the subfamily. A target‐enrichment approach was chosen, using the Angiosperms353 v.4 kit RNA‐baits and including 86 Bromelioideae species representing previously identified major evolutionary lineages. Phylogenetic analyses were based on 125 target nuclear loci, assembled off‐target plastome as well as mitogenome reads. A Bromelioideae phylogeny with a mostly well‐resolved backbone is provided based on nuclear (194 kbp), plastome (109 kbp), and mitogenome data (34 kbp). For the nuclear markers, a coalescent‐based analysis of single‐locus gene trees was performed as well as a supermatrix analysis of concatenated gene alignments. Nuclear and plastome datasets provide well‐resolved trees, which showed only minor topological incongruences. The mitogenome tree is not sufficiently resolved. A total of 26 well‐supported clades were identified. The generaAechmea,Canistrum,Hohenbergia,Neoregelia, andQuesneliawere revealed polyphyletic. In core Bromelioideae,Acanthostachysis sister to the remainder. Among the 26 recognized clades, 12 correspond with currently employed taxonomic concepts. Hence, the presented phylogenetic framework will serve as an important basis for future taxonomic revisions as well as to better understand the evolutionary drivers and processes in this exciting subfamily. 
    more » « less
  2. Abstract PremiseTo date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target‐enriched nuclear data to improve our understanding of phylogenetic relationships in the family. MethodsWe used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species inBrunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to inferBrunelliaphylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral‐state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections inBrunellia. ResultsBrunelliacomprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. ConclusionsPhylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene‐tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character‐state reconstructions. While target enrichment data allows us to broaden our understanding of diversification inBrunellia, the relationships among subclades remain incompletely understood. 
    more » « less
  3. PremisePhylogenetic relationships within major angiosperm clades are increasingly well resolved, but largely informed by plastid data. Areas of poor resolution persist within the Dipsacales, including placement ofHeptacodiumandZabelia, and relationships within the Caprifolieae and Linnaeeae, hindering our interpretation of morphological evolution. Here, we sampled a significant number of nuclear loci using a Hyb‐Seq approach and used these data to infer the Dipsacales phylogeny and estimate divergence times. MethodsSampling all major clades within the Dipsacales, we applied the Angiosperms353 probe set to 96 species. Data were filtered based on locus completeness and taxon recovery per locus, and trees were inferred using RAxML and ASTRAL. Plastid loci were assembled from off‐target reads, and 10 fossils were used to calibrate dated trees. ResultsVarying numbers of targeted loci and off‐target plastomes were recovered from most taxa. Nuclear and plastid data confidently placeHeptacodiumwith Caprifolieae, implying homoplasy in calyx morphology, ovary development, and fruit type. Placement ofZabelia, and relationships within the Caprifolieae and Linnaeeae, remain uncertain. Dipsacales diversification began earlier than suggested by previous angiosperm‐wide dating analyses, but many major splitting events date to the Eocene. ConclusionsThe Angiosperms353 probe set facilitated the assembly of a large, single‐copy nuclear dataset for the Dipsacales. Nevertheless, many relationships remain unresolved, and resolution was poor for woody clades with low rates of molecular evolution. We favor expanding the Angiosperms353 probe set to include more variable loci and loci of special interest, such as developmental genes, within particular clades. 
    more » « less
  4. Abstract We consider the evolution of phylogenetic gene trees along phylogenetic species networks, according to the network multispecies coalescent process, and introduce a new network coalescent model with correlated inheritance of gene flow. This model generalizes two traditional versions of the network coalescent: with independent or common inheritance. At each reticulation, multiple lineages of a given locus are inherited from parental populations chosen at random, either independently across lineages or with positive correlation according to a Dirichlet process. This process may account for locus-specific probabilities of inheritance, for example. We implemented the simulation of gene trees under these network coalescent models in the Julia package PhyloCoalSimulations, which depends on PhyloNetworks and its powerful network manipulation tools. Input species phylogenies can be read in extended Newick format, either in numbers of generations or in coalescent units. Simulated gene trees can be written in Newick format, and in a way that preserves information about their embedding within the species network. This embedding can be used for downstream purposes, such as to simulate species-specific processes like rate variation across species, or for other scenarios as illustrated in this note. This package should be useful for simulation studies and simulation-based inference methods. The software is available open source with documentation and a tutorial at https://github.com/cecileane/PhyloCoalSimulations.jl. 
    more » « less
  5. Abstract PremiseRubiaceae is among the most species‐rich plant families, as well as one of the most morphologically and geographically diverse. Currently available phylogenies have mostly relied on few genomic and plastid loci, as opposed to large‐scale genomic data. Target enrichment provides the ability to generate sequence data for hundreds to thousands of phylogenetically informative, single‐copy loci, which often leads to improved phylogenetic resolution at both shallow and deep taxonomic scales; however, a publicly accessible Rubiaceae‐specific probe set that allows for comparable phylogenetic inference across clades is lacking. MethodsHere, we use publicly accessible genomic resources to identify putatively single‐copy nuclear loci for target enrichment in two Rubiaceae groups: tribe Hillieae (Cinchonoideae) and tribal complex Palicoureeae+Psychotrieae (Rubioideae). We sequenced 2270 exonic regions corresponding to 1059 loci in our target clades and generated in silico target enrichment sequences for other Rubiaceae taxa using our designed probe set. To test the utility of our probe set for phylogenetic inference across Rubiaceae, we performed a coalescent‐aware phylogenetic analysis using a subset of 27 Rubiaceae taxa from 10 different tribes and three subfamilies, and one outgroup in Apocynaceae. ResultsWe recovered an average of 75% and 84% of targeted exons and loci, respectively, per Rubiaceae sample. Probes designed using genomic resources from a particular subfamily were most efficient at targeting sequences from taxa in that subfamily. The number of paralogs recovered during assembly varied for each clade. Phylogenetic inference of Rubiaceae with our target regions resolves relationships at various scales. Relationships are largely consistent with previous studies of relationships in the family with high support (≥0.98 local posterior probability) at nearly all nodes and evidence of gene tree discordance. DiscussionOur probe set, which we call Rubiaceae2270x, was effective for targeting loci in species across and even outside of Rubiaceae. This probe set will facilitate phylogenomic studies in Rubiaceae and advance systematics and macroevolutionary studies in the family. 
    more » « less