skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A target enrichment probe set for resolving phylogenetic relationships in the coffee family, Rubiaceae
Abstract PremiseRubiaceae is among the most species‐rich plant families, as well as one of the most morphologically and geographically diverse. Currently available phylogenies have mostly relied on few genomic and plastid loci, as opposed to large‐scale genomic data. Target enrichment provides the ability to generate sequence data for hundreds to thousands of phylogenetically informative, single‐copy loci, which often leads to improved phylogenetic resolution at both shallow and deep taxonomic scales; however, a publicly accessible Rubiaceae‐specific probe set that allows for comparable phylogenetic inference across clades is lacking. MethodsHere, we use publicly accessible genomic resources to identify putatively single‐copy nuclear loci for target enrichment in two Rubiaceae groups: tribe Hillieae (Cinchonoideae) and tribal complex Palicoureeae+Psychotrieae (Rubioideae). We sequenced 2270 exonic regions corresponding to 1059 loci in our target clades and generated in silico target enrichment sequences for other Rubiaceae taxa using our designed probe set. To test the utility of our probe set for phylogenetic inference across Rubiaceae, we performed a coalescent‐aware phylogenetic analysis using a subset of 27 Rubiaceae taxa from 10 different tribes and three subfamilies, and one outgroup in Apocynaceae. ResultsWe recovered an average of 75% and 84% of targeted exons and loci, respectively, per Rubiaceae sample. Probes designed using genomic resources from a particular subfamily were most efficient at targeting sequences from taxa in that subfamily. The number of paralogs recovered during assembly varied for each clade. Phylogenetic inference of Rubiaceae with our target regions resolves relationships at various scales. Relationships are largely consistent with previous studies of relationships in the family with high support (≥0.98 local posterior probability) at nearly all nodes and evidence of gene tree discordance. DiscussionOur probe set, which we call Rubiaceae2270x, was effective for targeting loci in species across and even outside of Rubiaceae. This probe set will facilitate phylogenomic studies in Rubiaceae and advance systematics and macroevolutionary studies in the family.  more » « less
Award ID(s):
2055525
PAR ID:
10529278
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Applications in Plant Sciences
Volume:
11
Issue:
6
ISSN:
2168-0450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseTarget sequence capture (Hyb‐Seq) is a cost‐effective sequencing strategy that employs RNA probes to enrich for specific genomic sequences. By targeting conserved low‐copy orthologs, Hyb‐Seq enables efficient phylogenomic investigations. Here, we present Asparagaceae1726—a Hyb‐Seq probe set targeting 1726 low‐copy nuclear genes for phylogenomics in the angiosperm family Asparagaceae—which will aid the often‐challenging delineation and resolution of evolutionary relationships within Asparagaceae. MethodsHere we describe and validate the Asparagaceae1726 probe set (https://github.com/bentzpc/Asparagaceae1726) in six of the seven subfamilies of Asparagaceae. We perform phylogenomic analyses with these 1726 loci and evaluate how inclusion of paralogs and bycatch plastome sequences can enhance phylogenomic inference with target‐enriched data sets. ResultsWe recovered at least 82% of target orthologs from all sampled taxa, and phylogenomic analyses resulted in strong support for all subfamilial relationships. Additionally, topology and branch support were congruent between analyses with and without inclusion of target paralogs, suggesting that paralogs had limited effect on phylogenomic inference. DiscussionAsparagaceae1726 is effective across the family and enables the generation of robust data sets for phylogenomics of any Asparagaceae taxon. Asparagaceae1726 establishes a standardized set of loci for phylogenomic analysis in Asparagaceae, which we hope will be widely used for extensible and reproducible investigations of diversification in the family. 
    more » « less
  2. PremisePhylogenetic relationships within major angiosperm clades are increasingly well resolved, but largely informed by plastid data. Areas of poor resolution persist within the Dipsacales, including placement ofHeptacodiumandZabelia, and relationships within the Caprifolieae and Linnaeeae, hindering our interpretation of morphological evolution. Here, we sampled a significant number of nuclear loci using a Hyb‐Seq approach and used these data to infer the Dipsacales phylogeny and estimate divergence times. MethodsSampling all major clades within the Dipsacales, we applied the Angiosperms353 probe set to 96 species. Data were filtered based on locus completeness and taxon recovery per locus, and trees were inferred using RAxML and ASTRAL. Plastid loci were assembled from off‐target reads, and 10 fossils were used to calibrate dated trees. ResultsVarying numbers of targeted loci and off‐target plastomes were recovered from most taxa. Nuclear and plastid data confidently placeHeptacodiumwith Caprifolieae, implying homoplasy in calyx morphology, ovary development, and fruit type. Placement ofZabelia, and relationships within the Caprifolieae and Linnaeeae, remain uncertain. Dipsacales diversification began earlier than suggested by previous angiosperm‐wide dating analyses, but many major splitting events date to the Eocene. ConclusionsThe Angiosperms353 probe set facilitated the assembly of a large, single‐copy nuclear dataset for the Dipsacales. Nevertheless, many relationships remain unresolved, and resolution was poor for woody clades with low rates of molecular evolution. We favor expanding the Angiosperms353 probe set to include more variable loci and loci of special interest, such as developmental genes, within particular clades. 
    more » « less
  3. Abstract PremiseTo date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target‐enriched nuclear data to improve our understanding of phylogenetic relationships in the family. MethodsWe used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species inBrunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to inferBrunelliaphylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral‐state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections inBrunellia. ResultsBrunelliacomprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. ConclusionsPhylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene‐tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character‐state reconstructions. While target enrichment data allows us to broaden our understanding of diversification inBrunellia, the relationships among subclades remain incompletely understood. 
    more » « less
  4. PremiseComprising five families that vastly differ in species richness—ranging from Gelsemiaceae with 13 species to the Rubiaceae with 13,775 species—members of the Gentianales are often among the most species‐rich and abundant plants in tropical forests. Despite considerable phylogenetic work within particular families and genera, several alternative topologies for family‐level relationships within Gentianales have been presented in previous studies. MethodsHere we present a phylogenomic analysis based on nuclear genes targeted by the Angiosperms353 probe set for approximately 150 species, representing all families and approximately 85% of the formally recognized tribes. We were able to retrieve partial plastomes from off‐target reads for most taxa and infer phylogenetic trees for comparison with the nuclear‐derived trees. ResultsWe recovered high support for over 80% of all nodes. The plastid and nuclear data are largely in agreement, except for some weakly to moderately supported relationships. We discuss the implications of our results for the order’s classification, highlighting points of increased support for previously uncertain relationships. Rubiaceae is sister to a clade comprising (Gentianaceae + Gelsemiaceae) + (Apocynaceae + Loganiaceae). ConclusionsThe higher‐level phylogenetic relationships within Gentianales are confidently resolved. In contrast to recent studies, our results support the division of Rubiaceae into two subfamilies: Cinchonoideae and Rubioideae. We do not formally recognize Coptosapelteae and Luculieae within any particular subfamily but treat them as incertae sedis. Our framework paves the way for further work on the phylogenetics, biogeography, morphological evolution, and macroecology of this important group of flowering plants. 
    more » « less
  5. Abstract Rodents are the largest order of mammals and contain several model organisms important to scientific research in a variety of fields, yet no large set of genomic markers have been designed for this group to date, hindering evolutionary studies into relationships of the group as a whole. Here we present a genomic probe set designed and optimized for rodents with a protocol that is easy to replicate with little laboratory investment. This design utilizes an anchored hybrid enrichment approach specifically targeting rodents to generate longer loci with a higher substitution rate than existing vertebrate probes to provide utility at various taxonomic levels. Using a test set of rodents from all five suborders, we successfully obtained alignments for 416 of the 418 target loci with an average of 1379 bp per locus and a total alignment of more than half a million base pairs. This genomic data set performed well in all phylogenetic analyses, especially in recent phylogenetic splits, with ample parsimony‐informative sites within genera and even within species, showing more than four times as many single nucleotide polymorphisms per locus than a recent vertebrate ultraconserved elements study. Additional support is provided in resolving deeper clades in Rodentia. By providing this probe design, we hope that more laboratories can easily generate data for answering questions in rodents from species delimitation to understanding relationships among families in rapid radiations. 
    more » « less