Permafrost cores (4.5-7.5 m long) were collected April 10th-19th, 2018, along a geomorphic gradient near Drew Point, Alaska to characterize active layer and permafrost geochemistry and material properties. Cores were collected from a young drained lake basin, an ancient drained lake basin, and primary surface that has not been reworked by thaw lake cycles. Measurements of total organic carbon (TOC) and total nitrogen (TN) content, stable carbon isotope ratios (δ13C) and radiocarbon (14C) analyses of bulk soils/sediments were conducted on 45 samples from 3 permafrost cores. Porewaters were extracted from these same core sections and used to measure salinity, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), anion (Cl-, Br-, SO4 2-, NO3 -), and trace metal (Ca, Mn, Al, Ba, Sr, Si, and Fe) concentrations. Radiogenic strontium (87Sr/86Sr) was measured on a subset of porewater samples. Cores were also sampled for material property measurements such as dry bulk density, water content, and grain size fractions.
more »
« less
Geochemical data from sediments and porewaters from ferruginous and meromictic Brownie Lake, Minnesota, U.S.A.
The dataset is comprised of analyses of sediment cores and sediment trap samples from ferruginous and meromictic Brownie Lake, Minnesota, U.S.A from January 2018 through February 2021. The dataset includes bulk sediment characteristics including water content, grain size, major and minor elements. Voltammetric scans were collected on porewaters and lake waters. Sediment porewaters were analyzed for pH, total alkalinity, ferrous iron, and dissolved sulfur species contents. Sediment samples were maintained under the exclusion of oxygen for analysis by synchrotron-based X-ray absorption spectroscopy.
more »
« less
- PAR ID:
- 10414328
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.more » « less
-
Abstract This study examines the relationship between water depth and diatom assemblages from lake-sediment-surface samples at Kelly Lake, California. A total of 40 surface-sediment samples (integrated upper 5 cm) were taken at various depths within the small (~ 3.74 ha) 5.7 m-deep lake. Secchi depths, water temperature, pH, salinity, conductivity, and total dissolved solids were also measured. Some diatom species showed distinct association with depth (e.g.,Fragilaria crotonensis, Nitzschia semirobusta). The relationship between the complete diatom assemblages and water depth was analyzed and assessed by depth-cluster analysis, a one-way analysis of similarity, principal components analysis and canonical correspondence analysis. Statistically significant differences were found between the assemblages associated with shallow depth (0–1.25 m), mid-depth (1.25–3.75 m), and deep-water (3.75–5.2 m) locations. The relationship between diatom assemblages and lake depth allowed two transfer models to be developed using the Modern Analogue Technique and Weighted Averaging Partial Least Squares. These models were compared and assessed by residual scatter plots. The results indicate that diatom-inferred transfer models based on surface-sediment samples from a single, relatively small and shallow lake can be a useful tool for studying past hydroclimatic variability (e.g., lake depth) from similar lakes in California and other regions where the large number of lakes required for traditional transfer-function development may not exist.more » « less
-
Mendoza-Lera, Clara (Ed.)The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota. Our objectives were to (i) evaluate the diversity and composition of the bacterial community at the sediment-water interface and (ii) determine how lake location and watershed land-use impact aqueous chemistry and influence bacterial community structure. Our 16S rRNA amplicon data from lake sediment cores, at two depth intervals, data indicate that sediment communities are more likely to cluster by ecological region rather than any individual lake properties ( e . g ., trophic status, total phosphorous concentration, lake depth). However, composition is tied to a given lake, wherein samples from the same core were more alike than samples collected at similar depths across lakes. Our results illustrate the diversity within lake sediment microbial communities and provide insight into relationships between taxonomy, physicochemical, and geographic properties of north temperate lakes.more » « less
-
Redox active species in Arctic lacustrine sediments play an important, regulatory role in the carbon cycle, yet there is little information on their spatial distribution, abundance, and oxidation states. Here, we use voltammetric microelectrodes to quantify the in situ concentrations of redox-active species at high vertical resolution (mm to cm) in the benthic porewaters of an oligotrophic Arctic lake (Toolik Lake, AK, USA). Mn( ii ), Fe( ii ), O 2 , and Fe( iii )-organic complexes were detected as the major redox-active species in these porewaters, indicating both Fe( ii ) oxidation and reductive dissolution of Fe( iii ) and Mn( iv ) minerals. We observed significant spatial heterogeneity in their abundance and distribution as a function of both location within the lake and depth. Microbiological analyses and solid phase Fe( iii ) measurements were performed in one of the Toolik Lake cores to determine the relationship between biogeochemical redox gradients and microbial communities. Our data reveal iron cycling involving both oxidizing (FeOB) and reducing (FeRB) bacteria. Additionally, we profiled a large microbial iron mat in a tundra seep adjacent to an Arctic stream (Oksrukuyik Creek) where we observed Fe( ii ) and soluble Fe( iii ) in a highly reducing environment. The variable distribution of redox-active substances at all the sites yields insights into the nature and distribution of the important terminal electron acceptors in both lacustrine and tundra environments capable of exerting significant influences on the carbon cycle.more » « less