skip to main content


Title: A diatom-inferred water-depth transfer function from a single lake in the northern California Coast Range
Abstract

This study examines the relationship between water depth and diatom assemblages from lake-sediment-surface samples at Kelly Lake, California. A total of 40 surface-sediment samples (integrated upper 5 cm) were taken at various depths within the small (~ 3.74 ha) 5.7 m-deep lake. Secchi depths, water temperature, pH, salinity, conductivity, and total dissolved solids were also measured. Some diatom species showed distinct association with depth (e.g.,Fragilaria crotonensis, Nitzschia semirobusta). The relationship between the complete diatom assemblages and water depth was analyzed and assessed by depth-cluster analysis, a one-way analysis of similarity, principal components analysis and canonical correspondence analysis. Statistically significant differences were found between the assemblages associated with shallow depth (0–1.25 m), mid-depth (1.25–3.75 m), and deep-water (3.75–5.2 m) locations. The relationship between diatom assemblages and lake depth allowed two transfer models to be developed using the Modern Analogue Technique and Weighted Averaging Partial Least Squares. These models were compared and assessed by residual scatter plots. The results indicate that diatom-inferred transfer models based on surface-sediment samples from a single, relatively small and shallow lake can be a useful tool for studying past hydroclimatic variability (e.g., lake depth) from similar lakes in California and other regions where the large number of lakes required for traditional transfer-function development may not exist.

 
more » « less
Award ID(s):
1702825
NSF-PAR ID:
10402105
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Paleolimnology
Volume:
70
Issue:
1
ISSN:
0921-2728
Page Range / eLocation ID:
p. 23-37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jackson Lake supplies valuable cultural and provisioning ecosystem services to the Upper Snake River watershed in Wyoming and Idaho (western USA). Construction of Jackson Lake Dam in the early 20th century raised lake level by ∼12 m, generating an important water resource supporting agriculture and ranching, as well as tourism associated with Grand Teton National Park. Outlet engineering drastically altered Jackson Lake’s surface area, morphology, and relationship with the inflowing Snake River, yet the consequences for nutrient dynamics and algae in the lake are unknown. Here, we report the results of a retrospective environmental assessment completed for Jackson Lake using a paleolimnological approach. Paleoecological (diatoms) and geochemical datasets were developed on a well-dated sediment core and compared with available hydroclimate data from the region, to assess patterns of limnological change. The core spans the termination of the Little Ice Age and extends to the present day (∼1654–2019 CE). Diatom assemblages prior to dam installation are characterized by high relative abundances of plankton that thrive under low nutrient availability, most likely resulting from prolonged seasonal ice cover and perhaps a single, short episode of deep convective mixing. Following dam construction, diatom assemblages shifted to planktic species that favor more nutrient-rich waters. Elemental abundances of sedimentary nitrogen and phosphorous support the interpretation that dam installation resulted in a more mesotrophic state in Jackson Lake after ∼1916 CE. The data are consistent with enhanced nutrient loading associated with dam emplacement, which inundated deltaic wetlands and nearshore vegetation, and perhaps increased water residence times. The results of the study highlight the sensitivity of algal composition and productivity to changes in nutrient status that accompany outlet engineering of natural lakes by humans and have implications for water resource management. 
    more » « less
  2. Abstract

    Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.

     
    more » « less
  3. Zooplankton samples for the 4 southern Wisconsin LTER lakes (Mendota, Monona, Wingra, Fish) have been collected for analysis by LTER since 1995 (1996 Wingra, Fish) when the southern Wisconsin lakes were added to the North Temperate Lakes LTER project. Samples are collected as a vertical tow using an 80-micron mesh conical net with a 30-cm diameter opening (net mouth: net length ratio = 1:3) consistent with sampling conducted by the Wisconsin Dept. Natural Resources in prior years. Zooplankton tows are taken in the deep hole region of each lake at the same time and location as other limnological sampling; zooplankton samples are preserved in 70% ethanol for later processing. Samples are usually collected with standard tow depths on most dates (e.g., 20 meters for Lake Mendota) but not always, so tow depth is recorded as a variate in the database. Crustacean species are identified and counted for Mendota and Monona and body lengths are recorded for a portion of each species identified (see data protocol for counting procedure); samples for Wingra and Fish lakes are archived but not routinely counted. Numerical densities for Mendota and Monona zooplankton samples are reported in the database as number or organisms per square meter without correcting for net efficiency. [Net efficiency varies from a maximum of about 70% under clear water conditions; net efficiency declines when algal blooms are dense (Lathrop, R.C. 1998. Water clarity responses to phosphorus and Daphnia in Lake Mendota. Ph.D. Thesis, University of Wisconsin-Madison.)] Organism densities in number per cubic meter can be obtained by dividing the reported square-meter density by the tow depth, although adjustments for the oxygenated depth zone during the summer and early fall stratified season is required to obtain realistic zooplankton volumetric densities in the lake's surface waters. Biomass densities can be calculated using literature formulas for converting organism body lengths reported in the database to body masses. Sampling Frequency: bi-weekly during ice-free season from late March or early April through early September, then every 4 weeks through late November; sampling is conducted usually once during the winter (depending on ice conditions). Number of sites: 4 Note: for a period between approximately 2011 and 2015, a calculation error caused density values to be significantly greater than they should have been for the entire dataset. That issue has been corrected. 
    more » « less
  4. We conducted a macroscale study of 2,210 shallow lakes (mean depth ≤ 3m or a maximum depth ≤ 5m) in the Upper Midwestern and Northeastern U.S. We asked: What are the patterns and drivers of shallow lake total phosphorus (TP), chlorophyll a (CHLa), and TP–CHLa relationships at the macroscale, how do these differ from those for 4,360 non-shallow lakes, and do results differ by hydrologic connectivity class? To answer this question, we assembled the LAGOS-NE Shallow Lakes dataset described herein, a dataset derived from existing LAGOS-NE, LAGOS-DEPTH, and LAGOS-CLIMATE datasets. Response data variables were the median of available summer (e.g., 15 June to 15 September) values of total phosphorus (TP) and chlorophyll a (CHLa). Predictor variables were assembled at two spatial scales for incorporation into hierarchical models. At the local or lake-specific scale (including the individual lake, its inter-lake watershed [iws] or corresponding HU12 watershed), variables included those representing land use/cover, hydrology, climate, morphometry, and acid deposition. At the regional scale (e.g., HU4 watershed), variables included a smaller set of predictor variables for hydrology and land use/cover. The dataset also includes the unique identifier assigned by LAGOS-NE(lagoslakeid); the latitude and longitude of the study lakes; their maximum and mean depths along with a depth classification of Shallow or non-Shallow; connectivity class (i.e., whether a lake was classified as connected (with inlets and outlets) or unconnected (lacking inlets); and the zone id for the HU4 to which each lake belongs. Along with the database, we provide the R scripts for the hierarchical models predicting TP or CHLa (TPorCHL_predictive_model.R), and the TP—CHLa relationship (TP_CHL_CSI_Model.R) for depth and connectivity subsets of the study lakes. 
    more » « less
  5. Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especially in the metalimnion). Empirical and process-driven water-quality models were then used to determine the causes of the low DO concentrations and the magnitudes of P-load reductions needed to improve the water quality of the lake enough to meet multiple water-quality goals, including the WDNR’s criteria for TP and DO. Data from previous studies showed that DO concentrations in the metalimnion decreased slightly as summer progressed in the early 1900s but, since the late 1970s, have typically dropped below 5 milligrams per liter (mg/L), which is the WDNR criterion for impairment. During 2014–18 (the baseline period for this study), the near-surface geometric mean TP concentration during June–September in the east side of the lake was 0.020 mg/L and in the west side was 0.016 mg/L (both were above the 0.015-mg/L WDNR criterion for the lake), and the metalimnetic DO minimum concentrations (MOMs) measured in August ranged from 1.0 to 4.7 mg/L. The degradation in water quality was assumed to have been caused by excessive P inputs to the lake; therefore, the TP inputs to the lake were estimated. The mean annual external P load during 2014–18 was estimated to be 8,980 kilograms per year (kg/yr), of which monitored and unmonitored tributary inputs contributed 84 percent, atmospheric inputs contributed 8 percent, waterfowl contributed 7 percent, and septic systems contributed 1 percent. During fall turnover, internal sediment recycling contributed an additional 7,040 kilograms that increased TP concentrations in shallow areas of the lake by about 0.020 mg/L. The elevated TP concentrations then persisted until the following spring. On an annual basis, however, there was a net deposition of P to the bottom sediments. Empirical models were used to describe how the near-surface water quality of Green Lake would be expected to respond to changes in external P loading. Predictions from the models showed a relatively linear response between P loading and TP and chlorophyll-a (Chl-a) concentrations in the lake, with the changes in TP and Chl-a concentrations being less on a percentage basis (50–60 percent for TP and 30–70 percent for Chl-a) than the changes in P loading. Mean summer water clarity, quantified by Secchi disk depths, had a greater response to decreases in P loading than to increases in P loading. Based on these relations, external P loading to the lake would need to be decreased from 8,980 kg/yr to about 5,460 kg/yr for the geometric mean June–September TP concentration in the east side of the lake, with higher TP concentrations than in the west side, to reach the WDNR criterion of 0.015 mg/L. This reduction of 3,520 kg/yr is equivalent to a 46-percent reduction in the potentially controllable external P sources (all external sources except for precipitation, atmospheric deposition, and waterfowl) from those measured during water years 2014–18. The total external P loading would need to decrease to 7,680 kg/yr (a 17-percent reduction in potentially controllable external P sources) for near-surface June–September TP concentrations in the west side of the lake to reach 0.015 mg/L. Total external P loading would need to decrease to 3,870–5,320 kg/yr for the lake to be classified as oligotrophic, with a near-surface June–September TP concentration of 0.012 mg/L. Results from the hydrodynamic water-quality model GLM–AED (General Lake Model coupled to the Aquatic Ecodynamics modeling library) indicated that MOMs are driven by external P loading and internal sediment recycling that lead to high TP concentrations during spring and early summer, which in turn lead to high phytoplankton production, high metabolism and respiration, and ultimately DO consumption in the upper, warmer areas of the metalimnion. GLM–AED results indicated that settling of organic material during summer might be slowed by the colder, denser, and more viscous water in the metalimnion and thus increase DO consumption. Based on empirical evidence from a comparison of MOMs with various meteorological, hydrologic, water quality, and in-lake physical factors, MOMs were lower during summers, when metalimnetic water temperatures were warmer, near-surface Chl-a and TP concentrations were higher, and Secchi depths were lower. GLM–AED results indicated that the external P load would need to be reduced to about 4,060 kg/yr, a 57-percent reduction from that measured in 2014–18, to eliminate the occurrence of MOMs less than 5 mg/L during more than 75 percent of the years (the target provided by the WDNR). Large reductions in external P loading are expected to have an immediate effect on the near-surface TP concentrations and metalimnetic DO concentrations in Green Lake; however, it may take several years for the full effects of the external-load reduction to be observed because internal sediment recycling is an important source of P for the following spring. 
    more » « less