Title: Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging
Strongly confined electric fields resulting from nanogaps within nanoparticle aggregates give rise to significant enhancement in surface-enhanced Raman scattering (SERS). Nanometer differences in gap sizes lead to drastically different confined field strengths, so much attention has been focused on the development and understanding of nanostructures with controlled gap sizes. In this work, we report a novel petal gap-enhanced Raman tag (GERT) consisting of bipyramid core and a nitrothiophenol (NTP) spacer to support the growth of hundreds of small petals and compare its SERS emission and localization to a traditional bipyramid aggregate. To do this, we used super resolution spectral SERS imaging that simultaneously captures the SERS images and spectra while varying the incident laser polarization. Intensity fluctuations inherent of SERS enabled super resolution algorithms to be applied which revealed sub-diffraction limited differences in the localization with respect to polarization direction for both particles. Interestingly, however, only the traditional bipyramid aggregates experienced a strong polarization dependence in their SERS intensity and in the plasmon-induced conversion of NTP to dimercaptoazobenzene (DMAB), which was localized with nanometer precision to regions of intense electromagnetic fields. The lack of polarization dependence (validated through electromagnetic simulations) and surface reactions from the bipyramid-GERTs suggest that the emissions arising from the bipyramid-GERTs are less influenced by confined fields. more »« less
Advances in nanotechnology enable the detection of trace molecules from the enhanced Raman signal generated at the surface of plasmonic nanoparticles. We have developed technology to enable super-resolution imaging of plasmonic nanoparticles, where the fluctuations in the surface enhanced Raman scattering (SERS) signal can be analyzed with localization microscopy techniques to provide nanometer spatial resolution of the emitting molecule’s location. Additional work now enables the super-resolved SERS image and the corresponding spectrum to be acquired simultaneously. Here we will discuss how this approach can be applied to provide new insights into biological cells.
The exploration of the plasmonic field enhancement of nanoprobes consisting of gold and magnetic core@gold shell nanoparticles has found increasing application for the development of surface-enhanced Raman spectroscopy (SERS)-based biosensors. The understanding of factors controlling the electromagnetic field enhancement, as a result of the plasmonic field enhancement of the nanoprobes in SERS biosensing applications, is critical for the design and preparation of the optimal nanoprobes. This report describes findings from theoretical calculations of the electromagnetic field intensity of dimer models of gold and magnetic core@gold shell nanoparticles in immunoassay SERS detection of biomarkers. The electromagnetic field intensities for a series of dimeric nanoprobes with antibody–antigen–antibody binding defined interparticle distances were examined in terms of nanoparticle sizes, core–shell sizes, and interparticle spacing. The results reveal that the electromagnetic field enhancement not only depended on the nanoparticle size and the relative core size and shell thicknesses of the magnetic core@shell nanoparticles but also strongly on the interparticle spacing. Some of the dependencies are also compared with experimental data from SERS detection of selected cancer biomarkers, showing good agreement. The findings have implications for the design and optimization of functional nanoprobes for SERS-based biosensors.
Metallic nanostructures supporting surface plasmon modes can concentrate optical fields, and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurements and is helpful in bioimaging, nano-thermometry, and chemical reaction monitoring applications. Despite increasing interest in nanoplasmonic metal luminescence, little attention has been paid to investigating its dependence on voltage modulation. Also, the hyphenated electrochemical surface-enhanced Raman spectroscopy (EC-SERS) technique typically ignores voltage-dependent spectral background information associated with nanoplasmonic metal luminescence due to limited mechanistic understanding and poor measurement reproducibility. Here, we report a combined experiment and theory study on dynamic voltage-modulated nanoplasmonic metal luminescence from hotspots at the electrode-electrolyte interface using multiresonant nanolaminate nano-optoelectrode arrays. Our EC-SERS measurements under 785 nm laser excitation demonstrate that short-wavenumber nanoplasmonic metal luminescence associated with plasmon-enhanced electronic Raman scattering (PE-ERS) exhibits a negative voltage modulation slope (up to ≈30 % V-1) in physiological ionic solutions. Furthermore, we have developed a phenomenological model to intuitively capture plasmonic, electronic, and ionic characteristics at the metal-electrolyte interface to understand the observed dependence of the PE-ERS voltage modulation slope on voltage polarization and ionic strength. The current work represents a critical step toward the general application of nanoplasmonic metal luminescence signals in optical voltage biosensing, hybrid optical-electrical signal transduction, and interfacial electrochemical monitoring.
Olson, Jacob E.; Braegelman, Adam S.; Zou, Lei; Webber, Matthew J.; Camden, Jon P.
(, Applied Spectroscopy)
null
(Ed.)
The cucurbit[n]uril (CB[ n]) family of macrocycles are known to bind a variety of small molecules with high affinity. These motifs thus have promise in an ever-growing list of trace detection methods. Surface-enhanced Raman scattering (SERS) detection schemes employing CB[ n] motifs exhibit increased sensitivity due to selective concentration of the analyte at the nanoparticle surface, coupled with the ability of CB[ n] to facilitate the formation of well-defined electromagnetic hot spots. Herein, we report a CB[7] SERS assay for quantification of phenylalanine (Phe) and further demonstrate its utility for detecting peptides with an N-terminal Phe. The CB[7]–guest interaction improves the sensitivity 5–25-fold over direct detection of Phe using citrate-capped silver nanoparticle aggregates, enabling use of a portable Raman system. We further illustrate detection of insulin via binding of CB[7] to the N-terminal Phe residue on its B-chain, suggesting a general strategy for detecting Phe-terminated peptides of clinically relevant biomolecules.
Norton, Ryan D.; Phan, Hoa T.; Gibbons, Stephanie N.; Haes, Amanda J.
(, Annual Review of Physical Chemistry)
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters is conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined.
Shoup, Deben N, Fan, Sanjun, Zapata-Herrera, Mario, Schorr, Hannah C, Aizpurua, Javier, and Schultz, Zachary D.
"Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging". Analytical Chemistry (). Country unknown/Code not available: American Chemical Society. https://doi.org/10.1021/acs.analchem.4c01564.https://par.nsf.gov/biblio/10523505.
@article{osti_10523505,
place = {Country unknown/Code not available},
title = {Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging},
url = {https://par.nsf.gov/biblio/10523505},
DOI = {10.1021/acs.analchem.4c01564},
abstractNote = {Strongly confined electric fields resulting from nanogaps within nanoparticle aggregates give rise to significant enhancement in surface-enhanced Raman scattering (SERS). Nanometer differences in gap sizes lead to drastically different confined field strengths, so much attention has been focused on the development and understanding of nanostructures with controlled gap sizes. In this work, we report a novel petal gap-enhanced Raman tag (GERT) consisting of bipyramid core and a nitrothiophenol (NTP) spacer to support the growth of hundreds of small petals and compare its SERS emission and localization to a traditional bipyramid aggregate. To do this, we used super resolution spectral SERS imaging that simultaneously captures the SERS images and spectra while varying the incident laser polarization. Intensity fluctuations inherent of SERS enabled super resolution algorithms to be applied which revealed sub-diffraction limited differences in the localization with respect to polarization direction for both particles. Interestingly, however, only the traditional bipyramid aggregates experienced a strong polarization dependence in their SERS intensity and in the plasmon-induced conversion of NTP to dimercaptoazobenzene (DMAB), which was localized with nanometer precision to regions of intense electromagnetic fields. The lack of polarization dependence (validated through electromagnetic simulations) and surface reactions from the bipyramid-GERTs suggest that the emissions arising from the bipyramid-GERTs are less influenced by confined fields.},
journal = {Analytical Chemistry},
publisher = {American Chemical Society},
author = {Shoup, Deben N and Fan, Sanjun and Zapata-Herrera, Mario and Schorr, Hannah C and Aizpurua, Javier and Schultz, Zachary D},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.