Freeform optics can reduce the cost, weight, and size of advanced imaging systems, but it is challenging to manufacture the complex rotationally asymmetric surfaces to optical tolerances. To address the need for disruptive, high-precision sub-aperture forming and finishing techniques for freeform optics, we investigate an alternative, non-contact polishing methodology using femtosecond lasers, combining modeling, experiments, and demonstrations. Femtosecondlaser- based polishing of germanium was investigated using an experimentally-validated twotemperature model of laser/germanium interaction to guide the understanding and selection of laser parameters to achieve near-nonthermal ablation for polishing and figuring. For the first time to our knowledge, model-guided femtosecond laser polishing of germanium was successfully demonstrated, achieving precision material removal while maintaining single-digit nanometer optical surface quality. The demonstrated femtosecond-laser-based polishing technique lays the foundation for semiconductor optics polishing/fabrication using femtosecond lasers and opens a viable path for high-precision, complex sub-aperture optical polishing tasks on various materials. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
more »
« less
Assessment of sub-micron subsurface damage in glass
We present a new, to the best of our knowledge, experimental method for assessing sub-micron level subsurface damage (SSD) on optical glass. The method correlates surface characteristics such as the fracture toughness and Young’s modulus via nanoindentation with the penetration depth into the tested surfaces at different overall penetration depths, as revealed by magnetorheological finishing spotting techniques. Our results on ground surfaces suggest that low surface roughness does not necessarily imply the absence of SSD. We also compared SSD on surfaces processed by deterministic microgrinding and femtosecond (fs) laser polishing. The fs-laser polished surfaces revealed no detectable SSD, thus establishing the feasibility of fs-laser polishing for precision optical manufacturing.
more »
« less
- PAR ID:
- 10414544
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 62
- Issue:
- 16
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. 4161
- Size(s):
- Article No. 4161
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
DeGroote_Nelson, Jessica; Unger, Blair L (Ed.)Traditional optical manufacturing techniques such as abrasive polishing and diamond turning create precise surfaces by removing material from the optical surface of a mirror. Such techniques often require many cycles of removal and metrology and can leave surface roughness or tool marks that negatively affect the straylight properties of an optical system. These residual artifacts often necessitate expensive postprocessing such as ion beam finishing. Limiting straylight is particularly crucial in the design of reflecting coronagraphs or optical systems that are sensitive to scattered light, for example for exoplanet detection, where even low-level scattering can degrade contrast ratios below the sensitivity needed to detect exoplanets. We introduce a non-contact method for shaping thin front-surface mirrors to avoid tool artifacts. Using laser techniques to alter local surface stresses, we deterministically introduce ≥ 8 waves (632.8 nm) of shape to 2 mm thick substrates. A deterministic method for creating arbitrary surface figures is under development and calibration.more » « less
-
ABSTRACTElectro-chemical polishing (ECP) was utilized to produce sub-micron surface finish on Inconel 718 parts manufactured by Laser Powder-Bed-Fusion (L-PBF) and extrusion methods. The L-PBF parts had very rough surfaces due to semi-welded powder particles, surface defects, and difference layer steps that were generally not found on surfaces of extruded and machined components. This study compared the results of electro-polishing of these differently manufactured parts under the same conditions. Titanium electrode was used with an acid-based electrolyte to polish both the specimens at different combinations of pulsed current density, duty cycle, and polishing time. Digital 3D optical profiler was used to assess the surface finish, while optical and scanning electron microscopy was utilized to observe the microstructure of polished specimens. At optimal condition, the ECP successfully reduced the surface of L-PBF part from 17 µm to 0.25 µm; further polishing did not improve the surface finish due to different removal rates of micro-leveled pores, cracks, nonconductive phases, and carbide particles in 3D-printed Inconel 718. The microstructure of extruded materials was uniform and free of processing defects, therefore can be polished consistently to 0.20 µm. Over-polishing of extruded material could improve its surface finish, but not for the L-PBF material due to defects and the surrounding micro-strain.more » « less
-
We have investigated the surface of lithium metal using x-ray photoemission spectroscopy and optical spectroscopic ellipsometry. Even if we prepare the surface of lithium metal rigorously by chemical cleaning and mechanical polishing inside a glovebox, both spectroscopic investigations show the existence of a few tens of nanometer-thick surface layers, consisting of lithium oxides and lithium carbonates. When lithium metal is exposed to room air (∼50% moisture), in situ real-time monitoring of optical spectra indicates that the surface layer grows at a rate of approximately 24 nm/min, presumably driven by an interface-controlled process. Our results hint that surface-layer-free lithium metals are formidable to achieve by a simple cleaning/polishing method, suggesting that the initial interface between lithium metal electrodes and solid-state electrolytes in fabricated lithium metal batteries can differ from an ideal lithium/electrolyte contact.more » « less
-
In additive manufacturing (AM), the surface roughness of the deposited parts remains significantly higher than the admissible range for most applications. Additionally, the surface topography of AM parts exhibits waviness profiles between tracks and layers. Therefore, post-processing is indispensable to improve surface quality. Laser-aided machining and polishing can be effective surface improvement processes that can be used due to their availability as the primary energy sources in many metal AM processes. While the initial roughness and waviness of the surface of most AM parts are very high, to achieve dimensional accuracy and minimize roughness, a high input energy density is required during machining and polishing processes although such high energy density may induce process defects and escalate the phenomenon of wavelength asperities. In this paper, we propose a systematic approach to eliminate waviness and reduce surface roughness with the combination of laser-aided machining, macro-polishing, and micro-polishing processes. While machining reduces the initial waviness, low energy density during polishing can minimize this further. The average roughness (Ra=1.11μm) achieved in this study with optimized process parameters for both machining and polishing demonstrates a greater than 97% reduction in roughness when compared to the as-built part.more » « less