skip to main content


This content will become publicly available on May 18, 2024

Title: Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead‐Free (1‐ x )BCZT‐( x )BCST Electroceramics with Energy Harvesting Capability
Abstract

Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

 
more » « less
Award ID(s):
1827745
NSF-PAR ID:
10414549
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Piezoelectric materials should simultaneously possess the soft properties (high piezoelectric coefficient,d33; high voltage coefficient,g33; high electromechanical coupling factor,k) and hard properties (high mechanical quality factor,Qm; low dielectric loss, tan δ) along with wide operation temperature (e.g., high rhombohedral–tetragonal phase transition temperatureTr–t) for covering off‐resonance (figure of merit (FOM),d33 ×g33) and on‐resonance (FOM,Qm ×k2) applications. However, achieving hard and soft piezoelectric properties simultaneously along with high transition temperature is quite challenging since these properties are inversely related to each other. Here, through a synergistic design strategy of combining composition/phase selection, crystallographic texturing, defect engineering, and water quenching technique, <001> textured 2 mol% MnO2doped 0.19PIN‐0.445PSN‐0.365PT ceramics exhibiting giant FOM values ofQm × (227–261) along with highd33 ×g33(28–35 × 10−12m2N−1), low tan δ (0.3–0.39%) and highTr–tof 140–190 °C, which is far beyond the performance of the state‐of‐the‐art piezoelectric materials, are fabricated. Further, a novel water quenching (WQ) room temperature poling technique, which results in enhanced piezoelectricity of textured MnO2doped PIN‐PSN‐PT ceramics, is reported. Based upon the experiments and phase‐field modeling, the enhanced piezoelectricity is explained in terms of the quenching‐induced rhombohedral phase formation. These findings will have tremendous impact on development of high performance off‐resonance and on‐resonance piezoelectric devices with high stability.

     
    more » « less
  2. Abstract

    A simple and facile method was developed to fabricate functional bulk barium titanate (BaTiO3,BT) ceramics using the paste extrusion 3D printing technique. TheBTceramic is a lead‐free ferroelectric material widely used for various applications in sensors, energy storage, and harvesting. There are several traditional methods (eg, tape casting) to process bulkBTceramics but they have disadvantages such as difficult handing without shape deformation, demolding, complex geometric shapes, expansive molds, etc. In this research, we utilized the paste extrusion 3D printing technique to overcome the traditional issues and developed printable ceramic suspensions containingBTceramic powder, polyvinylidene fluoride (PVDF), N,N‐dimethylformamide (DMF) through simple mixing method and chemical formulation. ThisPVDFsolution erformed multiple roles of binder, plasticizer, and dispersant for excellent manufacturability while providing high volume percent and density of the final bulk ceramic. Based on empirical data, it was found that the maximum binder ratio with good viscosity and retention for desired geometry is 1:8.8, while the maximumBTcontent is 35.45 vol% (77.01 wt%) in order to achieve maximum density of 3.93 g/cm3(65.3%) for 3D printedBTceramic. Among different sintering temperatures, it was observed that the sinteredBTceramic at 1400°C had highest grain growth and tetragonality which affected high performing piezoelectric and dielectric properties, 200 pC/N and 4730 at 103 Hz respectively. This paste extrusion 3D printing technique and simple synthesis method for ceramic suspensions are expected to enable rapid massive production, customization, design flexibility of the bulk piezoelectric and dielectric devices for next generation technology.

     
    more » « less
  3. Abstract

    Ferroelectric materials owning a polymorphic nanodomain structure usually exhibit colossal susceptibilities to external mechanical, electrical, and thermal stimuli, thus holding huge potential for relevant applications. Despite the success of traditional strategies by means of complex composition design, alternative simple methods such as strain engineering have been intensively sought to achieve a polymorphic nanodomain state in lead‐free, simple‐composition ferroelectric oxides in recent years. Here, a nanodomain configuration with morphed structural phases is realized in an epitaxial BaTiO3film grown on a (111)‐oriented SrTiO3substrate. Using a combination of experimental and theoretical approaches, it is revealed that a threefold rotational symmetry element enforced by the epitaxial constraint along the [111] direction of BaTiO3introduces considerable instability among intrinsic tetragonal, orthorhombic, and rhombohedral phases. Such phase degeneracy induces ultrafine ferroelectric nanodomains (1–10 nm) with low‐angle domain walls, which exhibit significantly enhanced dielectric and piezoelectric responses compared to the (001)‐oriented BaTiO3film with uniaxial ferroelectricity. Therefore, the finding highlights the important role of epitaxial symmetry in domain engineering of oxide ferroelectrics and facilitates the development of dielectric capacitors and piezoelectric devices.

     
    more » « less
  4. Abstract

    The availability of materials with high electrocaloric (EC) strengths is critical to enabling EC refrigeration in practical applications. Although large EC entropy changes, ΔSEC, and temperature changes, ΔTEC, have been achieved in traditional thin‐film ceramics and polymer ferroelectrics, they require the application of very high electric fields and thus their EC strengths ΔSECEand ΔTECEare too low for practical applications. Here, a fundamental thermodynamic description is developed, and extraordinarily large EC strengths of a metal‐free perovskite ferroelectric [MDABCO](NH4)I3(MDABCO) are predicted. The predicted EC strengths: isothermal ΔSECEand adiabatic ΔTECEfor MDABCO are 18 J m kg−1K−1MV−1and 8.06 K m MV−1, respectively, more than three times the largest reported values in BaTiO3single crystals. These predictions strongly suggest the metal‐free ferroelectric family of materials as the best candidates among existing materials for EC applications. The present work not only presents a general approach to developing thermodynamic potential energy functions for ferroelectric materials but also suggests a family of candidate materials with potentially extremely high EC performance.

     
    more » « less
  5. Abstract

    We report on structural, microstructural, spectroscopic, dielectric, electrical, ferroelectric, ferromagnetic, and magnetodielectric coupling studies of BiFeO3–GdMnO3[(BFO)1–x–(GMO)x], wherexis the concentration of GdMnO3(x= 0.0, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2), nanocrystalline ceramic solid solutions by auto-combustion method. The analysis of structural property by Rietveld refinement shows the existence of morphotropic phase boundary (MPB) atx= 0.10, which is in agreement with the Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) studies. The average crystallite size obtained from the transmission electron microscopy (TEM) and x-ray line profile analysis was found to be 20–30 nm. The scanning electron micrographs show the uniform distribution of grains throughout the surface of the sample. The dielectric dispersion behavior fits very well with the Maxwell-Wagner model. The frequency dependent phase angle (θ) study shows the resistive nature of solid solutions at low frequency, whereas it shows capacitive behavior at higher frequencies. The temperature variation of dielectric permittivity shows dielectric anomaly at the magnetic phase transition temperature and shifting of the phase transition towards the lower temperature with increasing GMO concentration. The Nyquist plot showed the conduction mechanism is mostly dominated by grains and grain boundary resistances. The ac conductivity of all the samples follows the modified Jonscher model. The impedance and modulus spectroscopy show a non-Debye type relaxation mechanism which can be modeled using a constant phase element (CPE) in the equivalent circuit. The solid-solutions of BFO-GMO show enhanced ferromagnetic-like behavior at room temperature. The ferroelectric polarization measurement shows lossy ferroelectric behavior. The frequency dependent magnetocapacitance and magnetoimpedance clearly show the existence of intrinsic magnetodielectric coupling. The (BFO)1–x–(GMO)xsolid solutions withx= 0.025–0.075 show significantly higher magnetocapacitance and magnetoimpedance compared to the pure BFO.

     
    more » « less