skip to main content

Search for: All records

Award ID contains: 1827745

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    With the astonishing advancement of present technology and increasing energy consumption, there is an ever‐increasing demand for energy‐efficient multifunctional sensors or transducers based on low‐cost, eco‐friendly material systems. In this context, self‐assembled vertically alignedβ‐Ga2−xWxO3nanocomposite (GWO‐VAN) architecture‐assisted self‐biased solar‐blind UV photodetection on a silicon platform, which is the heart of traditional electronics is presented. Utilizing precisely controlled growth parameters, the formation of W‐enriched verticalβ‐Ga2−xWxO3nanocolumns embedded into the W‐deficientβ‐Ga2−xWxO3matrix is reached. Detailed structural and morphological analyses evidently confirm the presence ofβ‐Ga2−xWxO3nanocomposite with a high structural and chemical quality. Furthermore, absorption and photoluminescence spectroscopy explains photo‐absorption dynamics and the recombination through possible donor–acceptor energy states. The proposed GWO‐VAN framework facilitates evenly dispersed nanoregions with asymmetric donor energy state distribution and thus forms build‐in potential at the verticalβ‐Ga2−xWxO3interfaces. As a result, the overall heterostructure evinces photovoltaic nature under the UV irradiation. A responsivity of ≈30 A/W is observed with an ultrafast response time (≈350 µs) under transient triggering conditions. Corresponding detectivity and external quantum efficiency are 7.9 × 1012Jones and 1.4 × 104%, respectively. It is believed that, while this is the first report exploiting GWO‐VAN architecture to manifest self‐biased solar‐blind UV photodetection, the implication of the approach is enormous in designing electronics for extreme environment functionality and has immense potential to demonstrate drastic improvement in low‐cost UV photodetector technology.

    more » « less
  2. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

    more » « less
  3. Abstract

    The enhanced safety, superior energy, and power density of rechargeable metal‐air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost‐effective and stable bifunctional catalyst that can replace expensive platinum (Pt)‐based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped β‐gallium oxide (β‐Ga2O3) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn‐air batteries. The Sn‐doped β‐Ga2O3sample with 15% Sn (Snx=0.15‐Ga2O3) displayed exceptional catalytic activity for a bulk, non‐noble metal‐based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx=0.15‐Ga2O3leads to a prototype Zn‐air battery with a high‐power density of 138 mW cm−2and improved cycling stability compared to devices with benchmark Pt‐based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in β‐Ga2O3aid in regulating the electron density distribution on the Sn‐doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.

    more » « less
  4. Abstract

    This work reports on the correlation between structure, surface/interface morphology and mechanical properties of pulsed laser deposited (PLD)β-Ga2O3films on transparent quartz substrates. By varying the deposition temperature in the range of 25 °C–700 °C, ∼200 nm thick Ga2O3films with variable microstructure and amorphous-to-nanocrystalline nature were produced onto quartz substrates by PLD. The Ga2O3films deposited at room temperature were amorphous; nanocrystalline Ga2O3films were realized at 700 °C. The interface microstructure is characterized with a typical nano-columnar morphology while the surface exhibits the uniform granular morphology. Corroborating with structure and surface/interface morphology, and with increasing deposition temperature, tunable mechanical properties were seen in PLD Ga2O3films. At 700 °C, for nanocrystalline Ga2O3films, the dense grain packing reduces the elastic modulus Erwhile improving the hardness. The improved crystallinity at elevated temperatures coupled with nanocrystallinity, theβ-phase stabilization is accounted for the observed enhancement in the mechanical properties of PLD Ga2O3films. The structure-morphology-mechanical property correlation in nanocrystalline PLDβ-Ga2O3films deposited on quartz substrates is discussed in detail.

    more » « less
  5. Abstract

    Vacancy‐ordered double perovskites are attracting significant attention due to their chemical diversity and interesting optoelectronic properties. With a view to understanding both the optical and magnetic properties of these compounds, two series of RuIVhalides are presented;A2RuCl6andA2RuBr6, whereAis K, NH4, Rb or Cs. We show that the optical properties and spin‐orbit coupling (SOC) behavior can be tuned through changing theAcation and the halide. Within a series, the energy of the ligand‐to‐metal charge transfer increases as the unit cell expands with the largerAcation, and the band gaps are higher for the respective chlorides than for the bromides. The magnetic moments of the systems are temperature dependent due to a non‐magnetic ground state withJeff=0 caused by SOC. Ru‐Xcovalency, and consequently, the delocalization of metald‐electrons, result in systematic trends of the SOC constants due to variations in theAcation and the halide anion.

    more » « less
  6. Abstract

    We report on the tunable and enhanced dielectric properties of tungsten (W) incorporated gallium oxide (Ga2O3) polycrystalline electroceramics for energy and power electronic device applications. The W‐incorporated Ga2O3(Ga2−2xWxO3, 0.00 ≤ x ≤ 0.20; GWO) compounds were synthesized by the high‐temperature solid‐state chemical reaction method by varying the W‐content. The fundamental aspects of the dielectric properties in correlation with the crystal structure, phase, and microstructure of the GWO polycrystalline compounds has been investigated in detail. A detailed study performed ascertains the W‐induced changes in the dielectric constant, loss tangent (tanδ) and ac conductivity. It was found that the dielectric constant increases with addition of W in the system as a function of temperature (25°C‐500°C). Frequency dependence (102‐106 Hz) of the dielectric constant follows the modified Debye model with a relaxation time of ∼20 to 90 μs and a spreading factor of 0.39 to 0.65. The dielectric constant of GWO is temperature independent almost until ∼300°C, and then increases rapidly in the range of 300°C to 500°C. W‐induced enhancement in the dielectric constant of GWO is fully evident in the frequency and temperature dependent dielectric studies. The frequency and temperature dependent tanδreveals the typical behavior of relaxation loses in GWO. Small polaron hopping mechanism is evident in the frequency dependent electrical transport properties of GWO. The remarkable effect of W‐incorporation on the dielectric and electrical transport properties of Ga2O3is explained by a two‐layer heterogeneous model consisting of thick grains separated by very thin grain boundaries along with the formation of a Ga2O3‐WO3composite was able to account for the observed temperature and frequency dependent electrical properties in GWO. The results demonstrate that the structure, electrical and dielectric properties can be tailored by tuning W‐content in the GWO compounds.

    more » « less
  7. Free, publicly-accessible full text available September 1, 2024
  8. Free, publicly-accessible full text available July 1, 2024