Mammalian gonadal sex is determined by the presence or absence of a Y chromosome and the subsequent production of sex hormones contributes to secondary sexual differentiation. However, sex chromosome-linked genes encoding dosage-sensitive transcription and epigenetic factors are expressed well before gonad formation and have the potential to establish sex-biased expression that persists beyond the appearance of gonadal hormones. Here, we apply a comparative bioinformatics analysis on a pair of published single-cell datasets from mouse and human during very early embryogenesis—from two-cell to pre-implantation stages—to characterize sex-specific signals and to assess the degree of conservation among early acting sex-specific genes and pathways.
Clustering and regression analyses of gene expression across samples reveal that sex initially plays a significant role in overall gene expression patterns at the earliest stages of embryogenesis which potentially may be the byproduct of signals from male and female gametes during fertilization. Although these transcriptional sex effects rapidly diminish, sex-biased genes appear to form sex-specific protein–protein interaction networks across pre-implantation stages in both mammals providing evidence that sex-biased expression of epigenetic enzymes may establish sex-specific patterns that persist beyond pre-implantation. Non-negative matrix factorization (NMF) on male and female transcriptomes generated clusters of genes with similar expression patterns across sex and developmental stages, including post-fertilization, epigenetic, and pre-implantation ontologies conserved between mouse and human. While the fraction of sex-differentially expressed genes (sexDEGs) in early embryonic stages is similar and functional ontologies are conserved, the genes involved are generally different in mouse and human.
This comparative study uncovers much earlier than expected sex-specific signals in mouse and human embryos that pre-date hormonal signaling from the gonads. These early signals are diverged with respect to orthologs yet conserved in terms of function with important implications in the use of genetic models for sex-specific disease.
- Award ID(s):
- 1933738
- PAR ID:
- 10414560
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Biology of Sex Differences
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2042-6410
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth.more » « less
-
Abstract Sex types of papaya are controlled by a pair of nascent sex chromosomes, but molecular genetic mechanisms of sex determination and sex differentiation in papaya are still unclear. We performed comparative analysis of transcriptomic profiles of male and female floral buds at the early development stage before the initiation of reproductive organ primordia at which there is no morphological difference between male and female flowers. A total of 1734 differentially expressed genes (DEGs) were identified, of which 923 showed female-biased expression and 811 showed male-biased expression. Functional annotation revealed that genes related to plant hormone biosynthesis and signaling pathways, especially in abscisic acid and auxin pathways, were overrepresented in the DEGs. Transcription factor binding motifs, such as MYB2, GAMYB, and AP2/EREBP, were enriched in the promoters of the hormone-related DEGs, and transcription factors with those motifs also exhibited differential expression between sex types. Among these DEGs, we also identified 11 genes in the non-recombining region of the papaya sex chromosomes and 9 genes involved in stamen and carpel development. Our results suggested that sex differentiation in papaya may be regulated by multiple layers of regulation and coordination and involved transcriptional, epigenetic, and phytohormone regulation. Hormones, especially ABA and auxin, transcription factors, and genes in the non-recombination region of the sex chromosome could be involved in this process. Our findings may facilitate the elucidation of signal transduction and gene interaction in sex differentiation of unisexual flowers in papaya.
-
Abstract Background Sexual differences across molecular levels profoundly impact cancer biology and outcomes. Patient gender significantly influences drug responses, with divergent reactions between men and women to the same drugs. Despite databases on sex differences in human tissues, understanding regulations of sex disparities in cancer is limited. These resources lack detailed mechanistic studies on sex-biased molecules.
Methods In this study, we conducted a comprehensive examination of molecular distinctions and regulatory networks across 27 cancer types, delving into sex-biased effects. Our analyses encompassed sex-biased competitive endogenous RNA networks, regulatory networks involving sex-biased RNA binding protein-exon skipping events, sex-biased transcription factor-gene regulatory networks, as well as sex-biased expression quantitative trait loci, sex-biased expression quantitative trait methylation, sex-biased splicing quantitative trait loci, and the identification of sex-biased cancer therapeutic drug target genes. All findings from these analyses are accessible on SexAnnoDB (
https://ccsm.uth.edu/SexAnnoDB/ ).Results From these analyses, we defined 126 cancer therapeutic target sex-associated genes. Among them, 9 genes showed sex-biased at both the mRNA and protein levels. Specifically,
S100A9 was the target of five drugs, of which calcium has been approved by the FDA for the treatment of colon and rectal cancers. Transcription factor (TF)-gene regulatory network analysis suggested that four TFs in the SARC male group targetedS100A9 and upregulated the expression ofS100A9 in these patients. Promoter region methylation status was only associated withS100A9 expression in KIRP female patients. Hypermethylation inhibitedS100A9 expression and was responsible for the downregulation ofS100A9 in these female patients.Conclusions Comprehensive network and association analyses indicated that the sex differences at the transcriptome level were partially the result of corresponding sex-biased epigenetic and genetic molecules. Overall, SexAnnoDB offers a discipline-specific search platform that could potentially assist basic experimental researchers or physicians in developing personalized treatment plans.
-
Premise One evolutionary path from hermaphroditism to dioecy is via a gynodioecious intermediate. The evolution of dioecy may also coincide with the formation of sex chromosomes that possess sex‐determining loci that are physically linked in a region of suppressed recombination. Dioecious papaya (
Carica papaya ) has an XY chromosome system, where the presence of a Y chromosome determines maleness. However, in cultivation, papaya is gynodioecious, due to the conversion of the male Y chromosome to a hermaphroditic Yhchromosome during its domestication.Methods We investigated gene expression linked to the X, Y, and Yhchromosomes at different floral developmental stages to identify differentially expressed genes that may be involved in the sexual transition of males to hermaphrodites.
Results We identified 309 sex‐biased genes found on the sex chromosomes, most of which are found in the pseudoautosomal regions. Female (XX) expression in the sex‐determining region was almost double that of X‐linked expression in males (XY) and hermaphrodites (XYh), which rules out dosage compensation for most sex‐linked genes; although, an analysis of hemizygous X‐linked loci found evidence of partial dosage compensation. Furthermore, we identified a candidate gene associated with sex determination and the transition to hermaphroditism, a homolog of the MADS‐box protein
SHORT VEGETATIVE PHASE .Conclusions We identified a pattern of partial dosage compensation for hemizygous genes located in the papaya sex‐determining region. Furthermore, we propose that loss‐of‐expression of the Y‐linked
SHORT VEGETATIVE PHASE homolog facilitated the transition from males to hermaphrodites in papaya. -
Abstract Background KDM6A is a demethylase encoded by a gene with female-biased expression due to escape from X inactivation. Its main role is to facilitate gene expression through removal of the repressive H3K27me3 mark, with evidence of some additional histone demethylase-independent functions. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in cancer. Methods Kdm6a was knocked out using CRISPR/Cas9 gene editing in F1 male and female mouse embryonic stem cells (ES) derived from reciprocal crosses between C57BL6 x Mus castaneus . Diploid and allelic RNA-seq analyses were done to compare gene expression between wild-type and Kdm6a knockout (KO) clones. The effects of Kdm6a KO on sex-biased gene expression were investigated by comparing gene expression between male and female ES cells. Changes in H3K27me3 enrichment and chromatin accessibility at promoter regions of genes with expression changes were characterized by ChIP-seq and ATAC-seq followed by diploid and allelic analyses. Results We report that Kdm6a KO in male and female embryonic stem (ES) cells derived from F1 hybrid mice cause extensive gene dysregulation, disruption of sex biases, and specific parental allele effects. Among the dysregulated genes are candidate genes that may explain abnormal developmental features of Kabuki syndrome caused by KDM6A mutations in human. Strikingly, Kdm6a knockouts result in a decrease in sex-biased expression and in preferential downregulation of the maternal alleles of a number of genes. Most promoters of dysregulated genes show concordant epigenetic changes including gain of H3K27me3 and loss of chromatin accessibility, but there was less concordance when considering allelic changes. Conclusions Our study reveals new sex-related roles of KDM6A in the regulation of developmental genes, the maintenance of sex-biased gene expression, and the differential expression of parental alleles.more » « less