skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Common and lifestyle‐specific traits of mycorrhizal root metabolome reflect ecological strategies of plant–mycorrhizal interactions
Award ID(s):
1754679
PAR ID:
10414735
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Ecology
Volume:
111
Issue:
3
ISSN:
0022-0477
Page Range / eLocation ID:
601 to 616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification. 
    more » « less
  2. Abstract Mycorrhizae alter global patterns of CO2fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be improved by the novel technology of imaging spectroscopy because mycorrhizal signatures propagate up from plant roots to impact forest canopy chemistry. We analyzed measurements from 143 airborne imaging spectroscopy surveys over 112,975 individual trees collected across 13 years. Results show remarkable accuracy in capturing ground truth observations of mycorrhizal associations from canopy signals across disparate landscapes (R2 = 0.92,p < 0.01). Upcoming imaging spectroscopy satellite missions can reveal new insights into landscape‐scale variations in water, nitrogen, phosphorus, carotenoid/anthocyanin, and cellulose/lignin composition. Applied globally, this approach could improve the spatial precision of mycorrhizal distributions by a factor of roughly 104and facilitate the incorporation of dynamic shifts in forest composition into Earth system models. 
    more » « less
  3. Summary Dispersal is a key process driving local‐scale community assembly and global‐scale biogeography of plant symbiotic arbuscular mycorrhizal (AM) fungal communities. A trait‐based approach could improve predictions regarding how AM fungal aerial dispersal varies by species.We conducted month‐long collections of aerial AM fungi for 12 consecutive months in an urban mesic environment at heights of 20 m. We measured morphological functional traits of collected spores and assessed aerial AM fungal community structure both morphologically and with high‐throughput sequencing.Large numbers of AM fungal spores were present in the air over the course of 1 yr, and these spores exhibited traits that facilitate aerial dispersal. Measured aerial spores were smaller than average for Glomeromycotinan fungi. Trait‐based predictions indicate that nearly one third of described species from diverse genera demonstrate the potential for aerial dispersal. Diversity of aerial AM fungi was relatively high (20 spore species and 17 virtual taxa), and both spore abundance and community structure shifted temporally.The prevalence of aerial dispersal in AM fungi is perhaps greater than previously indicated, and a hypothesized model of AM fungal aerial dispersal mechanisms is presented. Anthropogenic soil impacts may liberate AM fungal propagules initiating the dispersal of ruderal species. 
    more » « less
  4. Summary Arbuscular mycorrhizal fungi (AMF) are critical to native plant community ecology and influence plant invasions. Research has focused on nutritional benefits of AMF, although evidence shows that they may also confer pathogen resistance. However, most such work has focused on agriculturally relevant plant species. Therefore, whether AMF confer pathogen resistance tonative(wild) plant species, and impact of novel plant–microbial relationships on this benefit, remains understudied.We conducted a series of experiments measuring mycorrhizal‐induced resistance (MIR) to pathogens in native prairie plant species. We tested for pathogenicity across 69 field‐isolated fungi and oomycetes across five plant species. We then conducted experiments assessing growth response to native and non‐native AMF and pathogens in three plant species from native populations and milkweed (Asclepias syriaca) from native and postagricultural populations.We found evidence of MIR in milkweed. Moreover, we identified differential effects of AMF depending on plant species, with milkweed from native populations showing benefits from AMF. Finally, growth response was mediated by local adaptation, with matching AMF–pathogen origin strengthening responses.This work illustrates the importance of locally sourced AMF and plants to native plant ecology and suggests that pathogen resistance may be an important dimension of AMF benefit. 
    more » « less