skip to main content

Title: Tree Canopies Reflect Mycorrhizal Composition

Mycorrhizae alter global patterns of CO2fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be improved by the novel technology of imaging spectroscopy because mycorrhizal signatures propagate up from plant roots to impact forest canopy chemistry. We analyzed measurements from 143 airborne imaging spectroscopy surveys over 112,975 individual trees collected across 13 years. Results show remarkable accuracy in capturing ground truth observations of mycorrhizal associations from canopy signals across disparate landscapes (R2 = 0.92,p < 0.01). Upcoming imaging spectroscopy satellite missions can reveal new insights into landscape‐scale variations in water, nitrogen, phosphorus, carotenoid/anthocyanin, and cellulose/lignin composition. Applied globally, this approach could improve the spatial precision of mycorrhizal distributions by a factor of roughly 104and facilitate the incorporation of dynamic shifts in forest composition into Earth system models.

more » « less
Award ID(s):
1655896 2017949
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.

    more » « less
  2. Abstract

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts,USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R= 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively;P < 0.0001). We developed a model to estimateGPPfrom the tower‐based measurement ofSIFand leaf‐level ChlF parameters. The estimation ofGPPfrom this model agreed well with flux tower observations ofGPP(R= 0.68;P < 0.0001), demonstrating the potential ofSIFfor modelingGPP. At the leaf scale, we found that leafFq/Fm, the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopySIFyield (SIF/APAR,R= 0.79;P < 0.0001). We also found that canopySIFandSIF‐derivedGPP(GPPSIF) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R= 0.65 for canopyGPPSIFand chlorophyll content;P < 0.0001), leaf area index (LAI) (R= 0.35 for canopyGPPSIFandLAI;P < 0.0001), and normalized difference vegetation index (NDVI) (R= 0.36 for canopyGPPSIFandNDVI;P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.

    more » « less
  3. Yavitt, Joseph B. (Ed.)
    As global change shifts the species composition of forests, we need to understand which species characteristics affect soil organic matter cycling to predict future soil carbon (C) storage. Recently, whether a tree species forms a symbiosis with arbuscular (AM) versus ectomycorrhizal (EcM) fungi has been suggested as a strong predictor of soil carbon storage, but there is wide variability within EcM systems. In this study, we investigated how mycorrhizal associations and the species composition of canopy trees and mycorrhizal fungi relate to the proportion of soil C and nitrogen (N) in mineral-associations and soil C:N across four sites representing distinct climates and tree communities in the Eastern U.S. broadleaf forest biome. In two of our sites, we found the expected relationship of declining mineral-associated C and N and increasing soil C:N ratios as the basal area of EcM-associating trees increased. However, across all sites these soil properties strongly correlated with canopy tree and fungal species composition. Sites where the expected pattern with EcM basal area was observed were 1) dominated by trees with lower quality litter in the Pinaceae and Fagaceae families and 2) dominated by EcM fungi with medium distance exploration type hyphae, melanized tissues, and the potential to produce peroxidases. This observational study demonstrates that differences in soil organic matter between AM andEcM systems are dependent on the taxa of trees and EcM fungi involved. Important information is lost when the rich mycorrhizal symbiosis is reduced to two categories. 
    more » « less
  4. Abstract

    Evaporation of precipitation from plant surfaces, or interception, is a major component of the global water budget. Interception has been measured and/or modelled across a wide variety of forest types; however, most studies have focused on mature, second‐growth forests, and few studies have examined interception processes across forest age classes. We present data on two components of interception, total canopy interception (Ei) and litter interception—that is, Oi + Oehorizon layers—(Eff), across a forest age chronosequence, from 2 years since harvest to old growth. We used precipitation, throughfall, and stemflow collectors to measure total rainfall (P) and estimateEi; and collected litter biomass and modelled litter wetting and drying to estimate evaporative loss from litter. CanopyEi,Pminus throughfall, increased rapidly with forest age and then levelled off to a maximum of 21% ofPin an old‐growth site. Stemflow also varied across stands, with the highest stemflow (~8% ofP) observed in a 12‐year‐old stand with high stem density. ModelledEffwas 4–6% ofPand did not vary across sites. Total stand‐level interception losses (Ei + Eff) were best predicted by stand age (R2 = 0.77) rather than structural parameters such as basal area (R2 = 0.49) or leaf area (R2 < 0.01). Forest age appears to be an important driver of interception losses from forested mountain watersheds even when stand‐level structural variables are similar. These results will contribute to our understanding of water budgets across the broader matrix of forest ages that characterize the modern forest landscape.

    more » « less
  5. Abstract

    Identifying the primary controls of particulate (POM) and mineral‐associated organic matter (MAOM) content in soils is critical for determining future stocks of soil carbon (C) and nitrogen (N) across the globe. However, drivers of these soil organic matter fractions are likely to vary among ecosystems in response to climate, soil type and the composition of local biological communities.

    We tested how soil factors, climate and plant–fungal associations influenced the distribution and concentrations of C and N in MAOM and POM in seven temperate forests in the National Ecological Observatory Network (NEON) across the eastern United States. Samples of upper mineral horizon soil within each forest were collected in plots representing a gradient of dominant tree–mycorrhizal association, allowing us to test how plant and microbial communities influenced POM and MAOM across sites differing in climate and soil conditions.

    We found that concentrations of C and N in soil organic matter were primarily driven by soil mineralogy, but the relative abundance of MAOM versus POM C was strongly linked to plot‐level mycorrhizal dominance. Furthermore, the effect of dominant tree mycorrhizal type on the distribution of N among POM and MAOM fractions was sensitive to local climate: in cooler sites, an increasing proportion of ectomycorrhizal‐associated trees was associated with lower proportions of N in MAOM, but in warmer sites, we found the reverse. As an indicator of soil carbon age, we measured radiocarbon in the MAOM fraction but found that within and across sites, Δ14C was unrelated to mycorrhizal dominance, climate, or soil factors, suggesting that additional site‐specific factors may be primary determinants of long‐term SOM persistence.

    Synthesis. Our results indicate that while soil mineralogy primarily controls SOM C and N concentrations, the distribution of SOM among density fractions depends on the composition of vegetation and microbial communities, with these effects varying across sites with distinct climates. We also suggest that within biomes, the age of mineral‐associated soil carbon is not clearly linked to the factors that control concentrations of MAOM C and N.

    more » « less