Title: Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications
As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization. more »« less
Processing and modeling medical images have traditionally represented complex tasks requiring multidisciplinary collaboration. The advent of radiomics has assigned a central role to quantitative data analytics targeting medical image features algorithmically extracted from large volumes of images. Apart from the ultimate goal of supporting diagnostic, prognostic, and therapeutic decisions, radiomics is computationally attractive due to specific strengths: scalability, efficiency, and precision. Optimization is achieved by highly sophisticated statistical and machine learning algorithms, but it is especially deep learning that stands out as the leading inference approach. Various types of hybrid learning can be considered when building complex integrative approaches aimed to deliver gains in accuracy for both classification and prediction tasks. This perspective reviews some selected learning methods by focusing on both their significance for radiomics and their unveiled potential.
Akhtar, Shakil; Patel, Darshan; Asumadu, Samuel
(, R Plus: International Conference on Advanced Cancer Detection and Radiology Research (ICACDRR-24))
Abstract— Recent advances show the wide-ranging applications of machine learning for solving multi-disciplinary problems in cancer cell growth detection, modeling cancer growths and treatments, etc. There is growing interests among the faculty and students at Clayton State University to study the applications of machine learning for medical imaging and propose new algorithms based on a recently funded NSF grant proposal in medical imaging, skin cancer detection, and associated smartphone apps and a web-based user-friendly diagnosis interface. We tested many available open-source ML algorithm-based software sets in Python as applied to medical image data processing, and modeling used to predict cancer growths and treatments. We study the use of ML concepts that promote efficient, accurate, secure computation over medical images, identifying and classifying cancer cells, and modeling the cancer cell growths. In this collaborative project with another university, we follow a holistic approach to data analysis leading to more efficient cancer detection based upon both cell analysis and image recognition. Here, we compare ML based software methods and analyze their detection accuracy. In addition, we acquire publicly available data of cancer cell image files and analyze using deep learning algorithms to detect benign and suspicious image samples. We apply the current pattern matching algorithms and study the available data with possible diagnosis of cancer types.
Shi, Yu; Tang, Hannah; Baine, Michael J.; Hollingsworth, Michael A.; Du, Huijing; Zheng, Dandan; Zhang, Chi; Yu, Hongfeng
(, Cancers)
Pancreatic ductal adenocarcinoma (PDAC) presents a critical global health challenge, and early detection is crucial for improving the 5-year survival rate. Recent medical imaging and computational algorithm advances offer potential solutions for early diagnosis. Deep learning, particularly in the form of convolutional neural networks (CNNs), has demonstrated success in medical image analysis tasks, including classification and segmentation. However, the limited availability of clinical data for training purposes continues to represent a significant obstacle. Data augmentation, generative adversarial networks (GANs), and cross-validation are potential techniques to address this limitation and improve model performance, but effective solutions are still rare for 3D PDAC, where the contrast is especially poor, owing to the high heterogeneity in both tumor and background tissues. In this study, we developed a new GAN-based model, named 3DGAUnet, for generating realistic 3D CT images of PDAC tumors and pancreatic tissue, which can generate the inter-slice connection data that the existing 2D CT image synthesis models lack. The transition to 3D models allowed the preservation of contextual information from adjacent slices, improving efficiency and accuracy, especially for the poor-contrast challenging case of PDAC. PDAC’s challenging characteristics, such as an iso-attenuating or hypodense appearance and lack of well-defined margins, make tumor shape and texture learning challenging. To overcome these challenges and improve the performance of 3D GAN models, our innovation was to develop a 3D U-Net architecture for the generator, to improve shape and texture learning for PDAC tumors and pancreatic tissue. Thorough examination and validation across many datasets were conducted on the developed 3D GAN model, to ascertain the efficacy and applicability of the model in clinical contexts. Our approach offers a promising path for tackling the urgent requirement for creative and synergistic methods to combat PDAC. The development of this GAN-based model has the potential to alleviate data scarcity issues, elevate the quality of synthesized data, and thereby facilitate the progression of deep learning models, to enhance the accuracy and early detection of PDAC tumors, which could profoundly impact patient outcomes. Furthermore, the model has the potential to be adapted to other types of solid tumors, hence making significant contributions to the field of medical imaging in terms of image processing models.
Zhou, S. Kevin; Le, Hoang Ngan; Luu, Khoa; Nguyen, Hien V.; Ayache, Nicholas
(, Medical image analysis)
null
(Ed.)
Deep reinforcement learning (DRL) augments the reinforcement learning framework, which learns a sequence of actions that maximizes the expected reward, with the representative power of deep neural networks. Recent works have demonstrated the great potential of DRL in medicine and healthcare. This paper presents a literature review of DRL in medical imaging. We start with a comprehensive tutorial of DRL, including the latest model-free and model-based algorithms. We then cover existing DRL applications for medical imaging, which are roughly divided into three main categories: (I) parametric medical image analysis tasks including landmark detection, object/lesion detection, registration, and view plane localization; (ii) solving optimization tasks including hyperparameter tuning, selecting augmentation strategies, and neural architecture search; and (iii) miscellaneous applications including surgical gesture segmentation, personalized mobile health intervention, and computational model personalization. The paper concludes with discussions of future perspectives.
Stevens, Jack B; Riley, Breylon A; Je, Jihyeon; Gao, Yuan; Wang, Chunhao; Mowery, Yvonne M; Brizel, David M; Yin, Fang‐Fang; Liu, Jian‐Guo; Lafata, Kyle J
(, Medical Physics)
Abstract BackgroundDelta radiomics is a high‐throughput computational technique used to describe quantitative changes in serial, time‐series imaging by considering the relative change in radiomic features of images extracted at two distinct time points. Recent work has demonstrated a lack of prognostic signal of radiomic features extracted using this technique. We hypothesize that this lack of signal is due to the fundamental assumptions made when extracting features via delta radiomics, and that other methods should be investigated. PurposeThe purpose of this work was to show a proof‐of‐concept of a new radiomics paradigm for sparse, time‐series imaging data, where features are extracted from a spatial‐temporal manifold modeling the time evolution between images, and to assess the prognostic value on patients with oropharyngeal cancer (OPC). MethodsTo accomplish this, we developed an algorithm to mathematically describe the relationship between two images acquired at time and . These images serve as boundary conditions of a partial differential equation describing the transition from one image to the other. To solve this equation, we propagate the position and momentum of each voxel according to Fokker–Planck dynamics (i.e., a technique common in statistical mechanics). This transformation is driven by an underlying potential force uniquely determined by the equilibrium image. The solution generates a spatial‐temporal manifold (3 spatial dimensions + time) from which we define dynamic radiomic features. First, our approach was numerically verified by stochastically sampling dynamic Gaussian processes of monotonically decreasing noise. The transformation from high to low noise was compared between our Fokker–Planck estimation and simulated ground‐truth. To demonstrate feasibility and clinical impact, we applied our approach to18F‐FDG‐PET images to estimate early metabolic response of patients (n = 57) undergoing definitive (chemo)radiation for OPC. Images were acquired pre‐treatment and 2‐weeks intra‐treatment (after 20 Gy). Dynamic radiomic features capturing changes in texture and morphology were then extracted. Patients were partitioned into two groups based on similar dynamic radiomic feature expression via k‐means clustering and compared by Kaplan–Meier analyses with log‐rank tests (p < 0.05). These results were compared to conventional delta radiomics to test the added value of our approach. ResultsNumerical results confirmed our technique can recover image noise characteristics given sparse input data as boundary conditions. Our technique was able to model tumor shrinkage and metabolic response. While no delta radiomics features proved prognostic, Kaplan–Meier analyses identified nine significant dynamic radiomic features. The most significant feature was Gray‐Level‐Size‐Zone‐Matrix gray‐level variance (p = 0.011), which demonstrated prognostic improvement over its corresponding delta radiomic feature (p = 0.722). ConclusionsWe developed, verified, and demonstrated the prognostic value of a novel, physics‐based radiomics approach over conventional delta radiomics via data assimilation of quantitative imaging and differential equations.
Preuss, Kiersten, Thach, Nate, Liang, Xiaoying, Baine, Michael, Chen, Justin, Zhang, Chi, Du, Huijing, Yu, Hongfeng, Lin, Chi, Hollingsworth, Michael A., and Zheng, Dandan. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Retrieved from https://par.nsf.gov/biblio/10343862. Cancers 14.7 Web. doi:10.3390/cancers14071654.
Preuss, Kiersten, Thach, Nate, Liang, Xiaoying, Baine, Michael, Chen, Justin, Zhang, Chi, Du, Huijing, Yu, Hongfeng, Lin, Chi, Hollingsworth, Michael A., & Zheng, Dandan. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers, 14 (7). Retrieved from https://par.nsf.gov/biblio/10343862. https://doi.org/10.3390/cancers14071654
Preuss, Kiersten, Thach, Nate, Liang, Xiaoying, Baine, Michael, Chen, Justin, Zhang, Chi, Du, Huijing, Yu, Hongfeng, Lin, Chi, Hollingsworth, Michael A., and Zheng, Dandan.
"Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications". Cancers 14 (7). Country unknown/Code not available. https://doi.org/10.3390/cancers14071654.https://par.nsf.gov/biblio/10343862.
@article{osti_10343862,
place = {Country unknown/Code not available},
title = {Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications},
url = {https://par.nsf.gov/biblio/10343862},
DOI = {10.3390/cancers14071654},
abstractNote = {As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.},
journal = {Cancers},
volume = {14},
number = {7},
author = {Preuss, Kiersten and Thach, Nate and Liang, Xiaoying and Baine, Michael and Chen, Justin and Zhang, Chi and Du, Huijing and Yu, Hongfeng and Lin, Chi and Hollingsworth, Michael A. and Zheng, Dandan},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.