This research focuses on studying the scattering phenomenon. Scattering electromagnetic waves from a rotating conducting cylinder is investigated when the material of the conducting cylinder is linear, homogeneous, isotropic, and dispersive. This study is an extension of a previous work that investigated the effect of the rotating conducting cylinder on the scattered phase and amplitude, when the material of the conducting cylinder is linear, homogeneous, isotropic, and nondispersive. One of the important result of the previous work is that the Franklin transformation is a proper and more accurate method to calculate the effect of the rotation, and gives more accurate results than Galilean transformation. In this research, the Franklin transformation will be used to investigate the effect of the rotation of the object on the scattered phase and magnitude of the incident waves. The two types of incident waves (E-wave and H-wave) will be considered herein. The simulation results will clearly display the behavior of the scattered phase and magnitude with changes to the incident frequency, the speed of rotation, and the radius of the very good conducting cylinder. Moreover, this result is compared with the result of the previous work (non- dispersive material) to show the behavior of the scattered phase and magnitude when the incident frequency, speed of the rotation and radius of the very good conducting cylinder is changed. 
                        more » 
                        « less   
                    
                            
                            Inverse-Designed Metastructures Together with Reconfigurable Couplers to Compute Forward Scattering
                        
                    
    
            Wave-based analog computing in the forms of inversedesigned metastructures and the meshes of Mach−Zehnder interferometers (MZI) have recently received considerable attention due to their capability in emulating linear operators, performing vector-matrix multiplication, inverting matrices, and solving integral and differential equations via electromagnetic wave interaction and manipulation in such structures. Here, we combine these two platforms to propose a wave-based metadevice that can compute scattered fields in electromagnetic forward scattering problems. The proposed device consists of two subsystems: a set of reconfigurable couplers with a proper feedback system and an inverse-designed inhomogeneous material block. The first subsystem computes the magnitude and phase of the dipole polarization induced in the scatterers when illuminated with a given incident wave (matrix inversion). The second subsystem computes the magnitude and phase of the scattered fields at given detection points (vector-matrix multiplication). We discuss the functionality of this metadevice, and through several examples, we theoretically evaluate its performance by comparing the simulation results of this device with fullwave numerical simulations and numerically evaluated matrix inversion. We also highlight that since the first section is reconfigurable, the proposed device can be used for different permittivity distributions of the scatterer and incident excitations without changing the inverse-designed section. Our proposed device may provide a versatile platform for rapid computation in various scattering scenarios. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1720530
- PAR ID:
- 10414929
- Date Published:
- Journal Name:
- ACS Photonics
- ISSN:
- 2330-4022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In recent years, wave-based analog computing has been at the center of attention for providing ultra-fast and power-efficient signal processing enabled by wave propagation through artificially engineered structures. Building on these structures, various proposals have been put forward for performing computations with waves. Most of these proposals have been aimed at linear operations, such as vector-matrix multiplications. The weak and hardly controllable nonlinear response of electromagnetic materials imposes challenges in the design of wave-based structures for performing nonlinear operations. In the present work, first, by using the method of inverse design we propose a three-port device, which consists of a combination of linear and Kerr nonlinear materials, exhibiting the desired power-dependent transmission properties. Then, combining a proper arrangement of such devices with a collection of Mach–Zehnder interferometers (MZIs), we propose a reconfigurable nonlinear optical architecture capable of implementing a variety of nonlinear functions of the input signal. The proposed device may pave the way for wave-based reconfigurable nonlinear signal processing that can be combined with linear networks for full-fledged wave-based analog computing.more » « less
- 
            null (Ed.)In this paper, we develop a conceptually unified approach for characterizing and determining scattering poles and interior eigenvalues for a given scattering problem. Our approach explores a duality stemming from interchanging the roles of incident and scattered fields in our analysis. Both sets are related to the kernel of the relative scattering operator mapping incident fields to scattered fields, corresponding to the exterior scattering problem for the interior eigenvalues and the interior scattering problem for scattering poles. Our discussion includes the scattering problem for a Dirichlet obstacle where duality is between scattering poles and Dirichlet eigenvalues, and the inhomogeneous scattering problem where the duality is between scattering poles and transmission eigenvalues. Our new characterization of the scattering poles suggests a numerical method for their computation in terms of scattering data for the corresponding interior scattering problem.more » « less
- 
            This paper presents a reconfigurable intelligent surface (RIS) design and simulation aimed at enhancing beamforming and beam steering capabilities for 5G and 6G mobile communications. The proposed design introduces a 2- bit unit cell design, having four distinct phase states that can be tuned by a single varactor diode. This configuration has a 5x5 array and provides efficient operation at 23.8 GHz within the 5G New Radio (NR) frequency range 2 (FR2). The proposed RIS design demonstrates unique beam steering capabilities ranging from −60∘ to 60∘ in the azimuth plane which is crucial for extending coverage into the mm-wave coverage. The performance of the RIS is simulated using the CST 3D electromagnetic simulator, focusing on radar cross section (RCS) pattern for optimization. The simulation results reveal effective beam steering capabilities ranging from -10° to -60° and 10° to 60°, with a minimum scan loss of approximately 3 dB. The proposed RIS exhibits the high angular reciprocity that handles the incident waves up to 110∘ at an oblique 60∘ angle.more » « less
- 
            Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    