skip to main content

Search for: All records

Award ID contains: 1720530

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nanomechanical resonators are built into phones, as filters or accelerometers, but they lack a knob to effectively tune the frequency at the nanoscale when it’s easy to tune on an octave the tone of a classical musical instrument like a guitar string. Moreover, the control of deformation in nanomaterials, as two-dimensional (2D) materials, to tailor their electronic properties, i.e., straintronic, opens up avenues for applications in force detection, bolometry or quantum emitters. An accurate control of the deformation within these materials is thus necessary to fully exploit their potential. The precise study of deformations in 2D materials involves measurements of vibration modes and nanomechanics. By using a suspended MoS2membrane heated by the Joule effect, we induce a strong softening of the mechanical resonance frequency as a function of the electrothermal heating, over one octave. A simple electrical tension is used to modulate the thermal mechanical tuning. Its amplitude is very large, greater than 100% modulation for one volt, compared to other approaches on 2D or 1D materials and, moreover, a very wide frequency range is accessible. Finally, we have related a photo-induced softening of the membrane over very long times with the current measurements and a photothermal effect.

    more » « less
  2. Abstract

    Granular hydrogels are an emerging class of biomaterials formed by jamming hydrogel microparticles (i.e., microgels). These materials have many advantageous properties that can be tailored through microgel design and extent of packing. To enhance the range of properties, granular composites can be formed with a hydrogel interstitial matrix between the packed microgels, allowing for material flow and then stabilization after crosslinking. This approach allows for distinct compartments (i.e., microgels and interstitial space) with varied properties to engineer complex material behaviors. However, a thorough investigation of how the compositions and ratios of microgels and interstitial matrices influence material properties has not been performed. Herein, granular hydrogel composites are fabricated by combining fragmented hyaluronic acid (HA) microgels with interstitial matrices consisting of photocrosslinkable HA. Microgels of varying compressive moduli (10–70 kPa) are combined with interstitial matrices (0–30 vol.%) with compressive moduli varying from 2–120 kPa. Granular composite structure (confocal imaging), mechanics (local and bulk), flow behavior (rheology), and printability are thoroughly assessed. Lastly, variations in the interstitial matrix chemistry (covalent vs guest–host) and microgel degradability are investigated. Overall, this study describes the influence of granular composite composition on structure and mechanical properties of granular hydrogels towards informed designs for future applications.

    more » « less
  3. Abstract

    Cell engineering, soft robotics, and wearable electronics often desire soft materials that are easy to deform, self‐heal readily, and can relax stress rapidly. Hydrogels, a type of hydrophilic networks, are such kind of materials that can be made responsive to environmental stimuli. However, conventional hydrogels often suffer from poor stretchability and repairability. Here, hydrogels consisting of boronic ester dynamic covalent bonds in a double network of poly(vinyl alcohol)/boric acid and chitosan are synthesized, which demonstrate extreme stretchability (up to 310 times the original length), instant self‐healing (within 5 s), and reusability and inherent adhesion. Their instant stress relaxation stems from a low activation energy of the boronic ester bond exchange (≤20 kJ mol−1) and contributes to the extreme stretchability and self‐healing behaviors. Various water‐dispersible additives can be readily incorporated in the hydrogels via hand kneading for potential applications such as soft electronics, bio‐signal sensing, and soft artificial joints.

    more » « less
  4. Abstract

    Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2activation occurs heterolytically, leading to a hydride on Ru, an H+on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.

    more » « less
  5. Abstract

    Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm).

    more » « less
  6. Abstract

    Reconfigurable arrays of 2D nanomaterials are essential for the realization of switchable and intelligent material systems. Using liquid crystals (LCs) as a medium represents a promising approach, in principle, to enable such control. In practice, however, this approach is hampered by the difficulty of achieving stable dispersions of nanomaterials. Here, we report on good dispersions of pristine CdSe nanoplatelets (NPLs) in LCs, and reversible, rapid control of their alignment and associated anisotropic photoluminescence, using a magnetic field. We reveal that dispersion stability is greatly enhanced using polymeric, rather than small molecule, LCs and is considerably greater in the smectic phases of the resulting systems relative to the nematic phases. Aligned composites exhibit highly polarized emission that is readily manipulated by field-realignment. Such dynamic alignment of optically-active 2D nanomaterials may enable the development of programmable materials for photonic applications and the methodology can guide designs for anisotropic nanomaterial composites for a broad set of related nanomaterials.

    more » « less
  7. Abstract

    Metamaterials and metasurfaces operating in the visible and near‐infrared (NIR) offer a promising route towards next‐generation photodetectors and devices for solar energy harvesting. While numerous metamaterials and metasurfaces using metals and semiconductors have been demonstrated, semimetals‐based metasurfaces in the vis‐NIR range are notably missing. This work experimentally demonstrates a broadband metasurface superabsorber based on large area, semimetallic, van der Waals platinum diselenide (PtSe2) thin films in agreement with electromagnetic simulations. The results show that PtSe2is an ultrathin and scalable semimetal that concurrently possesses high index and high extinction across the vis‐NIR range. Consequently, the thin‐film PtSe2on a reflector separated by a dielectric spacer can absorb >85% for the unpatterned case and ≈97% for the optimized 2D metasurface in the 400–900 nm range making it one of the strongest and thinnest broadband perfect absorbers to date. The results present a scalable approach to photodetection and solar energy harvesting, demonstrating the practical utility of high index, high extinction semimetals for nanoscale optics.

    more » « less
  8. Abstract

    The incorporation of a secondary network into traditional single‐network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one‐pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free‐radical crosslinking of methacrylate‐modified hyaluronic acid (HA) to form the primary network and ii) thiol–ene crosslinking of norbornene‐modified HA with thiolated guest–host assemblies of adamantane and β‐cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof‐of‐concept, the IPN hydrogels are implemented as low‐viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.

    more » « less
  9. Free, publicly-accessible full text available June 1, 2024
  10. Free, publicly-accessible full text available June 1, 2024