skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia
Abstract Eurasia, home to ~70% of global population, is characterized by (semi-)arid climate. Water scarcity in the mid-latitude Eurasia (MLE) has been exacerbated by a consistent decline in terrestrial water storage (TWS), attributed primarily to human activities. However, the atmospheric mechanisms behind such TWS decline remain unclear. Here, we investigate teleconnections between drying in low-latitude North Atlantic Ocean (LNATO) and TWS depletions across MLE. We elucidate mechanistic linkages and detecte high correlations between decreased TWS in MLE and the decreased precipitation-minus-evapotranspiration (PME) in LNATO. TWS in MLE declines by ~257% during 2003-2017 due to northeastward propagation of PME deficit following two distinct seasonal landfalling routes during January-May and June-January. The same mechanism reduces TWS during 2031-2050 by ~107% and ~447% under scenarios SSP245 and SSP585, respectively. Our findings highlight the risk of increased future water scarcity across MLE caused by large-scale climatic drivers, compounding the impacts of human activities.  more » « less
Award ID(s):
1752729
PAR ID:
10414938
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)—known as Asia’s water tower—has triggered widespread concerns because HMA protects millions of people against water stress 1,2 . However, the mechanisms behind the heterogeneous trends observed in terrestrial water storage (TWS) over the TP remain poorly understood. Here we use a Lagrangian particle dispersion model and satellite observations to attribute about 1 Gt of monthly TWS decline in the southern TP during 2003–2016 to westerlies-carried deficit in precipitation minus evaporation (PME) from the southeast North Atlantic. We further show that HMA blocks the propagation of PME deficit into the central TP, causing a monthly TWS increase by about 0.5 Gt. Furthermore, warming-induced snow and glacial melt as well as drying-induced TWS depletion in HMA weaken the blocking of HMA’s mountains, causing persistent northward expansion of the TP’s TWS deficit since 2009. Future projections under two emissions scenarios verified by satellite observations during 2020–2021 indicate that, by the end of the twenty-first century, up to 84% (for scenario SSP245) and 97% (for scenario SSP585) of the TP could be afflicted by TWS deficits. Our findings indicate a trajectory towards unsustainable water systems in HMA that could exacerbate downstream water stress. 
    more » « less
  2. Abstract GRACE (Gravity Recovery and Climate Experiment) has been widely used to evaluate terrestrial water storage (TWS) and groundwater storage (GWS). However, the coarse‐resolution of GRACE data has limited the ability to identify local vulnerabilities in water storage changes associated with climatic and anthropogenic stressors. This study employs high‐resolution (1 km2) GRACE data generated through machine learning (ML) based statistical downscaling to illuminate TWS and GWS dynamics across twenty sub‐regions in the Indus Basin. Monthly TWS and GWS anomalies obtained from a geographically weighted random forest (RFgw) model maintained good consistency with original GRACE data at the 25 km2grid scale. The downscaled data at 1 km2resolution illustrate the spatial heterogeneity of TWS and GWS depletion within each sub‐region. Comparison with in‐situ GWS from 2,200 monitoring wells shows that downscaling of GRACE data significantly improves agreement with in‐situ data, evidenced by higher Kling‐Gupta Efficiency (0.50–0.85) and correlation coefficients (0.60–0.95). Hotspots with the highest TWS and GWS decline rate between 2002 and 2023 were Dehli Doab (−442, −585 mm/year), BIST Doab (−367, −556 mm/year), Rajasthan (−242, −381 mm/year), and BARI (−188, −333 mm/year). Based on a general additive model, 47%–83% of the TWS decline was associated with anthropogenic stressors mainly due to increasing trends of crop sown area, water consumption, and human settlements. The decline rate of TWS and GWS anomalies was lower (i.e., −25 to −75 mm/year) in upstream sub‐regions (e.g., Yogo, Gilgit, Khurmong, Kabul) where climatic factors (downward shortwave radiations, air temperature, and sea surface temperature) explained 72%–91% of TWS/GWS changes. The relative influences of climatic and anthropogenic stressors varied across sub‐regions, underscoring the complex interplay of natural‐human activities in the basin. These findings inform place‐based water resource management in the Indus Basin by advancing the understanding of local vulnerabilities. 
    more » « less
  3. Abstract. We investigate the interannual and interdecadalhydrological changes in the Amazon River basin and its sub-basins duringthe 1980–2015 period using GRACE satellite data and a physically based, 2 kmgrid continental-scale hydrological model (LEAF-Hydro-Flood) that includes aprognostic groundwater scheme and accounts for the effects of land use–landcover (LULC) change. The analyses focus on the dominant mechanisms thatmodulate terrestrial water storage (TWS) variations and droughts. We findthat (1) the model simulates the basin-averaged TWS variations remarkablywell; however, disagreements are observed in spatial patterns of temporaltrends, especially for the post-2008 period. (2) The 2010s is the driestperiod since 1980, characterized by a major shift in the decadal mean comparedto the 2000s caused by increased drought frequency. (3) Long-term trends in TWSsuggest that the Amazon overall is getting wetter (1.13 mm yr−1), but itssouthern and southeastern sub-basins are undergoing significant negative TWSchanges, caused primarily by intensified LULC changes. (4) Increasingdivergence between dry-season total water deficit and TWS release suggests astrengthening dry season, especially in the southern and southeasternsub-basins. (5) The sub-surface storage regulates the propagation ofmeteorological droughts into hydrological droughts by strongly modulatingTWS release with respect to its storage preceding the drought condition. Oursimulations provide crucial insight into the importance of sub-surface storagein alleviating surface water deficit across Amazon and open pathways forimproving prediction and mitigation of extreme droughts under changingclimate and increasing hydrologic alterations due to human activities (e.g.,LULC change). 
    more » « less
  4. These datasets accompany a publication in Geophysical Research Letters by Martens et al. (2024), entitled: "GNSS Geodesy Quantifies Water-Storage Gains and Drought Improvements in California Spurred by Atmospheric Rivers." Please refer to the manuscript and supporting information for additional details.Dataset 1: Seasonal Changes in TWS based on the Mean and Median of the Solution SetWe estimate net gains in water storage during the fall and winter of each year (October to March) using the mean TWS solutions from all nine inversion products, subtracting the average storage for October from the average storage for March in the following year. One-sigma standard deviations are computed as the square root of the sum of the variances for October and for March. The variance in each month is computed based on the nine independent estimates of mean monthly storage (see “GNSS Analysis and Inversion” in the Supporting Information).The dataset includes net gains in water storage for both the Sierra Nevada and the SST watersheds (see header lines). For each watershed, results are provided in units of volume (km3) and in units of equivalent water height (mm). Furthermore, for each watershed, we also provide the total storage gains based on non-detrended and linearly detrended time series. In columns four and five, respectively, we provide estimates of snow water equivalent (SWE) from SNODAS (National Operational Hydrologic Remote Sensing Center, 2023) and water-storage changes in surface reservoirs from CDEC (California Data Exchange Center, 2023). In the final column, we provide estimates of net gains in subsurface storage (soil moisture plus groundwater), which are computed by subtracting SWE and reservoir storage from total storage.For each data block, the columns are: (1) time period (October of the starting year to March of the following year); (2) average gain in total water storage constrained by nine inversions of GNSS data; (3) one-sigma standard deviation in the average gain in total water storage; (4) gain in snow water equivalent, computed by subtracting the average snow storage in October from the average snow storage in March of the following year; (5) gain in reservoir storage (CDEC database; within the boundaries of each watershed), computed by subtracting the average reservoir storage in October from the average reservoir storage in March of the following year; and (6) average gain in subsurface water storage, estimated as the average gain in total water storage minus the average gain in snow storage minus the gain in reservoir storage.For the period from October 2022 to March 2023, we also compute mean gains in total water storage using daily estimates of TWS. Here, we subtract the average storage for the first week in October 2022 (1-7 October) from the average storage for the last week in March 2023 (26 March – 1 April). The one-sigma standard deviation is computed as the square root of the sum of the variances for the first week in October and the last week in March. The variance in each week is computed based on the nine independent estimates of daily storage over seven days (63 values per week). The storage gains for 2022-2023 computed using these methods are distinguished in the datafile by an asterisk (2022-2023*; final row in each data section).Dataset 1a provides estimates of storage changes based on the mean and standard deviation of the solution set. Dataset 1b provides estimates of storage changes based on the median and inter-quartile range of the solution set.Dataset 2: Estimated Changes in TWS in the Sierra NevadaChanges in TWS (units of volume: km3) in the Sierra Nevada watersheds. The first column represents the date (YYYY-MM-DD). For monthly solutions, the TWS solutions apply to the month leading up to that date. The remaining nine columns represent each of the nine solutions described in the text. “UM” represents the University of Montana, “SIO” represents the Scripps Institution of Oceanography, and “JPL” represents the Jet Propulsion Laboratory. “NGL” refers to the use of GNSS analysis products from the Nevada Geodetic Laboratory, “CWU” refers to Central Washington University, and “MEaSUREs” refers to the Making Earth System Data Records for Use in Research Environments program. The time series have not been detrended.We highlight that we have added changes in reservoir storage (see Dataset 8) back into the JPL solutions, since reservoir storage had been modeled and removed from the GNSS time series prior to inversion in the JPL workflow (see “Detailed Description of Methods” in the Supporting Information). Thus, the storage values presented here for JPL differ slightly from storage values pulled directly from Dataset 6 and integrated over the area of the Sierra Nevada watersheds.Dataset 3: Estimated Changes in TWS in the Sacramento-San Joaquin-Tulare BasinSame as Dataset 2, except that data apply to the Sacramento-San Joaquin-Tulare (SST) Basin.Dataset 4: Inversion Products (SIO)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the Scripps Institution of Oceanography (SIO) using the methods described in the Supporting Information.Dataset 5: Inversion Products (UM)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the University of Montana (UM) using the methods described in the Supporting Information.Dataset 6: Inversion Products (JPL)Inversion solutions (NetCDF format) for TWS changes across the western US from January 2006 through March 2023. The products were produced at the Jet Propulsion Laboratory (JPL) using the methods described in the Supporting Information.Dataset 7: Lists of Excluded StationsStations are excluded from an inversion for TWS change based on a variety of criteria (detailed in the Supporting Information), including poroelastic behavior, high noise levels, and susceptibility to volcanic deformation. This dataset provides lists of excluded stations from each institution generating inversion products (SIO, UM, JPL).Dataset 8: Lists of Reservoirs and LakesLists of reservoirs and lakes from the California Data Exchange Center (CDEC) (California Data Exchange Center, 2023), which are shown in Figures 1 and 2 of the main manuscript. In the interest of figure clarity, Figure 1 depicts only those reservoirs that exhibited volume changes of at least 0.15 km3 during the first half of WY23.Dataset 8a includes all reservoirs and lakes in California that exhibited volume changes of at least 0.15 km3 between October 2022 and March 2023. The threshold of 0.15 km3 represents a natural break in the distribution of volume changes at all reservoirs and lakes in California over that period (169 reservoirs and lakes in total). Most of the 169 reservoirs and lakes exhibited volume changes near zero km3. Datasets 8b and 8c include subsets of reservoirs and lakes (from Dataset 8a) that fall within the boundaries of the Sierra Nevada and SST watersheds.Furthermore, in the JPL data-processing and inversion workflow (see “Detailed Description of Methods” in the Supporting Information), surface displacements induced by volume changes in select lakes and reservoirs are modeled and removed from GNSS time series prior to inversion. The water-storage changes in the lakes and reservoirs are then added back into the solutions for water storage, derived from the inversion of GNSS data. Dataset 8d includes the list of reservoirs used in the JPL workflow.Dataset 9: Interseismic Strain Accumulation along the Cascadia Subduction ZoneJPL and UM remove interseismic strain accumulation associated with locking of the Cascadia subduction zone using an updated version of the Li et al. model (Li et al., 2018); see Supporting Information Section 2d. The dataset lists the east, north, and up velocity corrections (in the 4th, 5th, and 6th columns of the dataset, respectively) at each station; units are mm/year. The station ID, latitude, and longitude are listed in columns one, two, and three, respectively, of the dataset.Dataset 10: Days Impacted by Atmospheric RiversA list of days impacted by atmospheric rivers within (a) the HUC-2 boundary for California from 1 January 2008 until 1 April 2023 [Dataset 10a] and (b) the Sierra Nevada and SST watersheds from 1 October 2022 until 1 April 2023 [Dataset 10b]. File formats: [decimal year; integrated water-vapor transport (IVT) in kg m-1 s-1; AR category; and calendar date as a two-digit year followed by a three-character month followed by a two-digit day]. The AR category reflects the peak intensity anywhere within the watershed. We use the detection and classification methods of (Ralph et al., 2019; Rutz et al., 2014, 2019). See also Supporting Information Section 2i.Dataset 10c provides a list of days and times when ARs made landfall along the California coast between October 1980 and September 2023, based on the MERRA-2 reanalysis using the methods of (Rutz et al., 2014, 2019). Only coastal grid cells are included. File format: [year, month, day, hour, latitude, longitude, and IVT in kg m-1 s-1]. Values are sorted by time (year, month, day, hour) and then by latitude. See also Supporting Information Section 2g. 
    more » « less
  5. Abstract Data and knowledge of the spatial-temporal dynamics of surface water area (SWA) and terrestrial water storage (TWS) in China are critical for sustainable management of water resources but remain very limited. Here we report annual maps of surface water bodies in China during 1989–2016 at 30m spatial resolution. We find that SWA decreases in water-poor northern China but increases in water-rich southern China during 1989–2016. Our results also reveal the spatial-temporal divergence and consistency between TWS and SWA during 2002–2016. In North China, extensive and continued losses of TWS, together with small to moderate changes of SWA, indicate long-term water stress in the region. Approximately 569 million people live in those areas with deceasing SWA or TWS trends in 2015. Our data set and the findings from this study could be used to support the government and the public to address increasing challenges of water resources and security in China. 
    more » « less