Variability in hydroclimate impacts natural and human systems worldwide. In particular, both decadal variability and extreme precipitation events have substantial effects and are anticipated to be strongly influenced by climate change. From a practical perspective, these impacts will be felt relative to the continuously evolving background climate. Removing the underlying forced trend is therefore necessary to assess the relative impacts, but to date, the small size of most climate model ensembles has made it difficult to do this. Here we use an archive of large ensembles run under a high-emissions scenario to determine how decadal “megadrought” and “megapluvial” events—and shorter-term precipitation extremes—will vary relative to that changing baseline. When the trend is retained, mean state changes dominate: In fact, soil moisture changes are so large in some regions that conditions that would be considered a megadrought or pluvial event today are projected to become average. Time-of-emergence calculations suggest that in some regions including Europe and western North America, this shift may have already taken place and could be imminent elsewhere: Emergence of drought/pluvial conditions occurs over 61% of the global land surface (excluding Antarctica) by 2080. Relative to the changing baseline, megadrought/megapluvial risk either will not change or is slightly reduced. However, the increased frequency and intensity of both extreme wet and dry precipitation events will likely present adaptation challenges beyond anything currently experienced. In many regions, resilience against future hazards will require adapting to an ever-changing “normal,” characterized by unprecedented aridification/wetting punctuated by more severe extremes.
more »
« less
The timing of unprecedented hydrological drought under climate change
Abstract Droughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.
more »
« less
- Award ID(s):
- 1752729
- PAR ID:
- 10414946
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Droughts are anticipated to intensify in many parts of the world due to climate change. However, the issue of drought definition, namely the diversity of drought indices, makes it difficult to compare drought assessments. This issue is widely known, but its relative importance has never been quantitatively evaluated in comparison to other sources of uncertainty. Here, encompassing three drought categories (meteorological, agricultural, and hydrological droughts) with four temporal scales of interest, we evaluated changes in the drought frequency using multi-model and multi-scenario simulations to identify areas where the definition issue could result in pronounced uncertainties and to what extent. We investigated the disagreement in the signs of changes between drought definitions and decomposed the variance into four main factors: drought definitions, greenhouse gas concentration scenarios, global climate models, and global water models, as well as their interactions. The results show that models were the primary sources of variance over 82% of the global land area. On the other hand, the drought definition was the dominant source of variance in the remaining 17%, especially in parts of northern high-latitudes. Our results highlight specific regions where differences in drought definitions result in a large spread among projections, including areas showing opposite signs of significant changes. At a global scale, 7% of the variance resulted independently from the definition issue, and that value increased to 44% when 1st and 2nd order interactions were considered. The quantitative results suggest that by clarifying hydrological processes or sectors of interest, one could avoid these uncertainties in drought assessments to obtain a clearer picture of future drought change.more » « less
-
Abstract BackgroundThe global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. ResultsRespondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. ConclusionThe influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.more » « less
-
Presently, the Indian Ocean (IO) resides in a climate state that prevents strong year-to-year climate variations. This may change under greenhouse warming, but the mechanisms remain uncertain, thus limiting our ability to predict future changes in climate extremes. Using climate model simulations, we uncover the emergence of a mode of climate variability capable of generating unprecedented sea surface temperature and rainfall fluctuations across the IO. This mode, which is inhibited under present-day conditions, becomes active in climate states with a shallow thermocline and vigorous upwelling, consistent with the predictions of continued greenhouse warming. These predictions are supported by modeling and proxy evidence of an active mode during glacial intervals that favored such a state. Because of its impact on hydrological variability, the emergence of such a mode would become a first-order source of climate-related risks for the densely populated IO rim.more » « less
-
Abstract Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emissions while ensuring food security within planetary boundaries. However, climate change might also interact with management practices to alter N2O emission and emission factors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we developed a new hybrid modeling framework that integrates a machine learning model with an ensemble of eight process‐based models to project EFs under different climate and nitrogen policy scenarios. Our findings reveal that EFs are dynamically modulated by environmental changes, including climate, soil properties, and nitrogen management practices. Under low‐ambition nitrogen regulation policies, EF would increase from 1.18%–1.22% in 2010 to 1.27%–1.34% by 2050, representing a relative increase of 4.4%–11.4% and exceeding the IPCC tier‐1 EF of 1%. This trend is particularly pronounced in tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%–0.35% (relative increase of 11.9%–17%). In contrast, high‐ambition policies have the potential to mitigate the increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, our results demonstrate that global EFs are expected to continue rising due to warming and regional drying–wetting cycles, even in the absence of changes in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. This hybrid modeling framework offers a computationally efficient approach to projecting future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating socio‐economic assessments and policy‐making efforts.more » « less
An official website of the United States government

