skip to main content


Title: Mixing driven by critical reflection of near-inertial waves over the Texas-Louisiana shelf
Abstract Studies of internal wave-driven mixing in the coastal ocean have been mainly focused on internal tides, while wind-driven near-inertial waves (NIWs) have received less attention in this regard. This study demonstrates a scenario of NIW-driven mixing over the Texas-Louisiana shelf. Supported by a high-resolution simulation over the shelf, the NIWs driven by land-sea breeze radiate downward at a sharp front and enhance the mixing in the bottom boundary layer where the NIWs are focused due to slantwise critical reflection. The criterion for slantwise critical reflection of NIWs is (where ω is the wave frequency, S bot is the bottom slope, and S p is the isopycnal slope) under the assumption that the mean flow is in a thermal wind balance and only varies in the slope-normal direction. The mechanism driving the enhanced mixing is explored in an idealized simulation. During slantwise critical reflection, NIWs are amplified with enhanced shear and periodically destratify a bottom boundary layer via differential buoyancy advection, leading to periodically enhanced mixing. Turbulent transport of tracers is also enhanced during slantwise critical reflection of NIWs, which has implications for bottom hypoxia over the Texas-Louisiana shelf.  more » « less
Award ID(s):
1851531
NSF-PAR ID:
10415010
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the Texas-Louisiana Shelf in the Northern Gulf of Mexico, the eutrophic, fresh Mississippi/Atchafalaya river plume isolates saltier waters below, supporting the formation of bottom hypoxia in summer. The plume also generates strong density fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using high-resolution ocean observations and numerical simulations, we demonstrate how the summer land-sea breeze generates rapid vertical exchange at the plume fronts. We show that the interaction between the land-sea breeze and the fronts leads to convergence/divergence in the surface mixed layer, which further facilitates a slantwise circulation that subducts surface water along isopycnals into the interior and upwells bottom waters to the surface. This process causes significant vertical displacements of water parcels and creates a ventilation pathway for the bottom water in the northern Gulf. The ventilation of bottom water can bypass the stratification barrier associated with the Mississippi/Atchafalaya river plume and might impact the dynamics of the region’s dead zone.

     
    more » « less
  2. Abstract

    Enhanced diapycnal mixing induced by the near-bottom breaking of internal waves is an essential component of the lower meridional overturning circulation. Despite its crucial role in the ocean circulation, tidally driven internal wave breaking is challenging to observe due to its inherently short spatial and temporal scales. We present detailed moored and shipboard observations that resolve the spatiotemporal variability of the tidal response over a small-scale bump embedded in the continental slope of Tasmania. Cross-shore tidal currents drive a nonlinear trapped response over the steep bottom around the bump. The observations are roughly consistent with two-dimensional high-mode tidal lee-wave theory. However, the alongshore tidal velocities are large, suggesting that the alongshore bathymetric variability modulates the tidal response driven by the cross-shore tidal flow. The semidiurnal tide and energy dissipation rate are correlated at subtidal time scales, but with complex temporal variability. Energy dissipation from a simple scattering model shows that the elevated near-bottom turbulence can be sustained by the impinging mode-1 internal tide, where the dissipation over the bump isO(1%) of the incident depth-integrated energy flux. Despite this small fraction, tidal dissipation is enhanced over the bump due to steep topography at a horizontal scale ofO(1) km and may locally drive significant diapycnal mixing.

    Significance Statement

    Near-bottom turbulent mixing is a key element of the global abyssal circulation. We present observations of the spatiotemporal variability of tidally driven turbulent processes over a small-scale topographic bump off Tasmania. The semidiurnal tide generates large-amplitude transient lee waves and hydraulic jumps that are unstable and dissipate the tidal energy. These processes are consistent with the scattering of the incident low-mode internal tide on the continental slope of Tasmania. Despite elevated turbulence over the bump, near-bottom energy dissipation is small relative to the incident wave energy flux.

     
    more » « less
  3. Abstract

    A realistic numerical model was constructed to simulate the oceanic conditions and circulation in a large southeast Greenland fjord (Kangerdlugssuaq) and the adjacent shelf sea region during winter 2007–2008. The major outlet glaciers in this region recently destabilized, contributing to sea level rise and ocean freshening, with increased oceanic heating a probable trigger. It is not apparent a priori whether the fjord dynamics will be influenced by rotational effects, as the fjord width is comparable to the internal Rossby radius. The modeled currents, however, describe a highly three‐dimensional system, where rotational effects are of order‐one importance. Along‐shelf wind events drive a rapid baroclinic exchange, mediated by coastally trapped waves, which propagate from the shelf to the glacier terminus along the right‐hand boundary of the fjord. The terminus was regularly exposed to around 0.5 TW of heating over the winter season. Wave energy dissipation provoked vertical mixing, generating a buoyancy flux which strengthened overturning. The coastally trapped waves also acted to strengthen the cyclonic mean flow via Stokes' drift. Although the outgoing wave was less energetic and located at the opposite sidewall, the fjord did exhibit a resonant response, suggesting that fjords of this scale can also exhibit two‐dimensional dynamics. Long periods of moderate wind stress greatly enhanced the cross‐shelf delivery of heat toward the fjord, in comparison to stronger events over short intervals. This suggests that the timescale over which the shelf wind field varies is a key parameter in dictating wintertime heat delivery from the ocean to the ice sheet.

     
    more » « less
  4. Abstract

    Although typically used to measure dynamic strain from seismic and acoustic waves, Rayleigh‐based distributed acoustic sensing (DAS) is also sensitive to temperature, offering longer range and higher sensitivity to small temperature perturbations than conventional Raman‐based distributed temperature sensing. Here, we demonstrate that ocean‐bottom DAS can be employed to study internal wave and tide dynamics in the bottom boundary layer, a region of enhanced ocean mixing but scarce observations. First, we show temperature transients up to about 4 K from a power cable in the Strait of Gibraltar south of Spain, associated with passing trains of internal solitary waves in water depth <200 m. Second, we show the propagation of thermal fronts associated with the nonlinear internal tide on the near‐critical slope of the island of Gran Canaria, off the coast of West Africa, with perturbations up to about 2 K at 1‐km depth and 0.2 K at 2.5‐km depth. With spatial averaging, we also recover a signal proportional to the barotropic tidal pressure, including the lunar fortnightly variation. In addition to applications in observational physical oceanography, our results suggest that contemporary chirped‐pulse DAS possesses sufficient long‐period sensitivity for seafloor geodesy and tsunami monitoring if ocean temperature variations can be separated.

     
    more » « less
  5. Abstract

    In shallow coastal oceans, turbulent flows driven by surface winds and waves and constrained by a solid bottom disperse particles. This work examines the mechanisms driving horizontal and vertical dispersion of buoyant and sinking particles for times much greater than turbulent integral time scales. Turbulent fields are modeled using a wind‐stress driven large eddy simulation (LES), incorporating wave‐driven Langmuir turbulence, surface breaking wave turbulent kinetic energy inputs, and a solid bottom boundary. A Lagrangian stochastic model is paired to the LES to incorporate Lagrangian particle tracking. Within a subset of intermediate buoyant rise velocities, particles experience synergistic vertical mixing in which breaking waves (BW) inject particles into Langmuir downwelling velocities sufficient to drive deep mixing. Along‐wind dispersion is controlled by vertical shear in mean along‐wind velocities. Wind and bottom friction‐driven vertical shear enhances dispersion of buoyant and sinking particles, while energetic turbulent mixing, such as from BW, dampens shear dispersion. Strongly rising and sinking particles trapped at the ocean surface and bottom, respectively, experience no vertical shear, resulting in low rates of along‐wind dispersion. Crosswind dispersion is shaped by particle advection in wind‐aligned fields of counter‐rotating Langmuir and Couette roll cells. Langmuir cells enhance crosswind dispersion in neutrally to intermediately buoyant particles through enhanced cell hopping. Surface trapping restricts particles to Langmuir convergence regions, strongly inhibiting crosswind dispersion. In shallow coastal systems, particle dispersion depends heavily on particle buoyancy and wave‐dependent turbulent effects.

     
    more » « less