While our world consistently presents complicated, interdisciplinary problems with STEM foundations, most pre-university curricula do not encourage drawing on multidisciplinary knowledge in the sciences and engineering to create solutions. We developed an instructional approach, Iterative Science and Engineering (ISE), that cycles through scientific investigation and engineering design and culminates in constructing a solution to a local environmental challenge. Next, we created, revised, and evaluated a six-week ISE curricular program, Invasive Insects, culminating in 6th–9th-grade students building traps to mitigate local invasive insect populations. Over three Design-Based Research (DBR) cycles, we gathered and analyzed identical pre and post-test data from 554 adolescents to address the research question: what three-dimensional (3D) science and engineering knowledge do adolescents demonstrate over three DBR cycles associated with a curricular program following the Iterative Science and Engineering instructional approach? Results document students’ significant statistical improvements, with differential outcomes in different cycles. For example, most students demonstrated significant learning of 3D science and engineering argument construction in all cycles—still, students only significantly improved engineering design when they performed guided reflection on their designs and physically built a second trap. Our results suggest that the development, refinement, and empirical evaluation of an ISE curricular program led to students’ design, building, evaluation, and sharing of their learning of mitigating local invasive insect populations. To address complex, interdisciplinary challenges, we must provide opportunities for fluid and iterative STEM learning through scientific investigation and engineering design cycles.
more »
« less
Why is engineering design important for all leaners?
Why is engineering design important for all leaners? Engineering design systematically identifies needs, wants, and problems and then devises solutions to address them. A central component of our work is guiding students in the engineered design of solutions to local environmental problems. Science in society and schools must be for all citizens. Reasons include the desire to prepare citizens with the tools and knowledge to address local and global problems. With funding from the U.S. National Science Foundation, we foster sustained learning of Science, Technology, Engineering, and Mathematics (STEM) for students from primary school through university.
more »
« less
- Award ID(s):
- 2125844
- PAR ID:
- 10415184
- Date Published:
- Journal Name:
- Open Access Government
- Volume:
- 38
- Issue:
- 1
- ISSN:
- 2516-3817
- Page Range / eLocation ID:
- 300 to 301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The global pandemic and climate change have led to unprecedented environmental, social, and economic challenges with interdisciplinary STEM foundations. Even as STEM learning has never been more important, very few pre-college programs prepare students to address these challenges by emphasizing socio-scientific issue (SSI) problem solving and the engineering design of solutions to address local phenomena. The paper discusses the design and evaluation of a pre-college, SSI curricular unit where students expand their learning by creating solutions to increase biodiversity within local urban neighborhoods. The learning approach, which we call eco-solutioning, builds from current vision and policy documents in STEM education emphasizing phenomenon-centric instructional materials, science investigations, and engineering design. The paper outlines design principles for creating an eco-solutioning instructional unit that guides young students to: collect and analyze data on local organisms, use an engineering design approach to craft solutions to increase local biodiversity, and present their solutions to local city planners and community members. Two cycles of research studies evaluated student learning using paired t-tests. Results demonstrated significant pre-post learning outcomes in both research cycles. A third research cycle in the form of a summer extension program supported students as they implemented their local solutions. Conclusions highlight design principles for the successful creation of SSI curricular units centered on local environmental issues of interest to students, teachers, and stakeholders.more » « less
-
As the world becomes increasingly complex, students will be faced with problems that require outside-of-the-box thinking. The complexity of these problems is compounded when considering the needs of people and their impacts on the environment. The Next Generation Science Standards (NGSS) incorporate engineering design to develop students’ skills at defining and delimiting problems, designing solutions to problems, and optimizing the design solutions—all while maximizing benefit and minimizing risk (NGSS Lead States 2013). Design thinking furthers the engineering design process by acknowledging that solutions to engineering design problems may differ depending on the community the solution serves and the environment for which the solution is designed (Brown 2008). For example, if the challenge is to “build a strong building,” students located in Florida would consider whether the building could handle the strong winds and rains of a hurricane, while students located in California, where earthquakes are common, may view strong buildings as those that can withstand earthquakes.more » « less
-
Usable STEM knowledge for tomorrow's STEM problems More universities and education programs need more STEM knowledge in formal and informal settings to guide learners in applying STEM learning to the creation of solutions. To address this challenge, Nancy Butler Songer, the dean of the College of Education at the University of Utah designed a learning approach, Solutioning, that guides youth to deepen science content through science and engineering practices. Creating a six-week curricular program, the learning approach provided opportunities for students to use engineering design to create and provide feedback on a trap design that would attract a local invasive insect that was harmful to their community. Research was conducted on studies to provide empirical evidence on student STEM knowledge and learning and their ability to define science and engineering. Research results indicate that even elementary-age students demonstrate significant improvement in their understanding of STEM arguments as evaluated with a pre-post assessment before and after implementing a six-week solutioning curricular program.more » « less
-
Oftentimes engineering design tasks are thought of as acultural and devoid of community inclusion and values. However, engineering design is inherently a cultural endeavor. Problems needing engineering solutions or design thinking are situated in a specific community and need community solutions. This work in progress paper describes initial efforts from a project to help elementary and middle school teachers create culturally relevant engineering design tasks for implementation in their classrooms. To integrate best practices for culturally relevant pedagogy, the engineering design framework developed by UTeach Engineering was adapted to specifically address community needs and cultural values. Changes to the framework also include culturally relevant instructional strategies for classroom implementation. To situate the engineering design steps within a culturally relevant framework questions involving communities and students’ cultural needs, values, and expectations were posed in each stage of the design process. A water filtration engineering design task was situated in the cultural concept of “Mni Wiconi” (Water is life in the Dakota language). This was taught in a summer professional development workshop for a cohort of elementary and middle school teachers, in rural North Dakota, with school districts comprised of large Native American student populations. Teachers adapted this design task for their individual classrooms and content areas (science, math, social studies, ELA) and implemented it in their classrooms in the fall of 2021. Additional support for teachers was provided with fall workshop days aimed at helping them with the facilitation of a culturally relevant engineering task. To integrate culturally relevant teaching and good engineering design tasks, the North Dakota Department of Public Instruction’s Native American Essential Understandings Teachings of our Elder’s website was used. This allowed teachers and students to have firsthand knowledge of how various science and engineering concepts are framed within the indigenous community. Professional development focused on how to situate culturally responsive teaching in engineering design. For example, in one of the school districts the water filtration task was related to increased pollution of a nearby lake which holds significant importance for the local Tribal Nation. In addition to being able to visibly witness the demand for cleaner water, the book “We are Water Protectors” written by Carole Lindstrom, was used to provide cultural grounding for the Identify and Describe stages of the engineering design framework. Case studies of how teachers incorporated the water filtration design task into their lesson plans are presented along with their suggestions on how to improve classroom implementation. Future work in the program includes teachers and their students developing engineering design tasks situated in their own communities and cultures.more » « less
An official website of the United States government

