skip to main content


Title: Video: High-Resolution 4D Lagrangian Coherent Structures
High-speed, spatially-evolving turbulent boundary layers are of great importance across civilian and military applications. Furthermore, compressible boundary layers present additional challenges for energy and active scalar transport. Understanding transport phenomena is critical to efficient high-speed vehicle designs. Although at any instantaneous point in time a flow field may seem random, regions within the flow can exhibit coherency across space and time. These coherent structures play a key role in momentum and energy transport within the boundary layer. The two main categories for coherent structure identification are Eulerian and Lagrangian approaches. In this video, we focus on 4D (3D+Time) Lagrangian Coherent Structure (LCS), and the effect of wall curvature/temperature on these structures. We present the finite-time Lyapunov exponent (FTLE) for three wall thermal conditions (cooling, quasi-adiabatic and heating) for a concave wall curvature that builds on the experimental study by Donovan et al. (J. Fluid Mech., 259, 1-24, 1994). The flow is subject to a strong concave curvature (δ/R ~ -0.083, R is the curvature radius) followed by a very strong convex curvature (δ/R = 0.17). A GPU-accelerated particle simulation forms the basis for the 3-D FTLE where particles are advected over flow fields obtained via Direct Numerical Simulation (DNS) with high spatial/temporal resolution. We also show the cross-correlation between Q2 events (ejections) and the FTLE. The video is available at: https://gfm.aps.org/meetings/dfd-2022/63122e0e199e4c2da9a946a0  more » « less
Award ID(s):
2314303 1847241
NSF-PAR ID:
10415219
Author(s) / Creator(s):
;
Date Published:
Journal Name:
75th APS-DFD November 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Early researchers applied visualization techniques based on smoke and dye injections in order to describe coherent structures in turbulent flows. Generally speaking, visualization techniques have substantially evolved in the last few decades, spanning all disciplines. In recent times, Virtual Reality (VR) has revolutionized the way that visualization is carried out. In this study, we are performing fully immersive visualization of high-fidelity numerical results of supersonic spatially-developing turbulent boundary layers (SDTBL) under strong concave and concave curvatures and Mach = 2.86. The selected numerical tool is Direct Numerical Simulation (DNS) with high spatial/temporal resolution. The comprehensive DNS information sheds important light on the transport phenomena inside turbulent boundary layers subject to strong deceleration or Adverse Pressure Gradient (APG) caused by concave walls as well as to strong acceleration or Favorable Pressure Gradient (FPG) caused by convex walls at different wall thermal conditions (i.e., cold, adiabatic and hot walls). Another fluid dynamics example to be discussed is the high-speed crossflow-jet problem. We are extracting vortex core iso-surfaces via the Q-criterion to convert them to a file format readable by the HTC Vive VR and Varjo toolkit. Amidst the backdrop of cutting-edge progressions in both capabilities and User Interface (UI) enhancements of the VWT, researchers are now poised to delve into a realm of comprehensive understanding concerning SDTBL. Within this dynamic, fully immersive environment, the intricacies of flow development unfold before their eyes. The elevated UI refinements have bestowed users with remarkable freedom of movement across six directions and database selection, effectively amplifying their capacity for meticulous observation and incisive analysis of the animated flow phenomena 
    more » « less
  2. In this work, we introduce a scalable and efficient GPU-accelerated methodology for volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the analysis of Lagrangian Coherent Structures (LCS) in large-scale Direct Numerical Simulation (DNS) datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into their behavior in various flow conditions. Our novel owning-cell locator method enables efficient, constant-time cell search, and the algorithm draws inspiration from classical search algorithms and modern multi-level approaches in numerical linear algebra. The proposed method is implemented for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve modularity and extensibility, resulting in consistent parallel efficiency across different architectures. Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic proportional to the Mach number, and their inclination angle varies along the streamwise direction. We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with structures retaining coherency along both spanwise and streamwise directions. Additionally, we demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear upsampler, preserving general trends with only 10% of the required storage. In summary, we present a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable across various domains requiring efficient search algorithms in large structured domains. While this manuscript focuses on the methodology and its application to LCS, an in-depth study of the physics and compressibility effects in LCS candidates will be explored in a future publication. 
    more » « less
  3. In this work, we introduce a scalable and efficient GPU-accelerated methodology for volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the analysis of Lagrangian coherent structures (LCS) in large-scale direct numerical simulation (DNS) datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into their behavior in various flow conditions. Our novel owning-cell locator method enables efficient constant-time cell search, and the algorithm draws inspiration from classical search algorithms and modern multi-level approaches in numerical linear algebra. The proposed method is implemented for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve modularity and extensibility, resulting in consistent parallel efficiency across different architectures. Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic proportional to the Mach number, and their inclination angle varies along the streamwise direction. We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with structures retaining coherency along both spanwise and streamwise directions. Additionally, we demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear upsampler, preserving general trends with only 10% of the required storage. In summary, we present a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable across various domains, requiring efficient search algorithms in large, structured domains. While this article focuses on the methodology and its application to LCS, an in-depth study of the physics and compressibility effects in LCS candidates will be explored in a future publication.

     
    more » « less
  4. In this study, we delve into the intricate relation between Lagrangian Coherent Structures (LCS), primarily represented by the finite-time Lyapunov exponent (FTLE), and instantaneous temperature in turbulent wall-bounded flow scenarios. Turbulence, despite its chaotic facade, houses coherent structures vital to understanding the dynamical behavior of fluid flows. Recognizing this, we leverage high-fidelity Direct Numerical Simulation (DNS) to investigate compressible flows, focusing on the attracting manifolds in FTLE and their correlation with instantaneous temperature. The consequent insights into the coupling between fluid dynamics and thermodynamics reveal the profound influence of vortex stretching, shearing, and compression on local thermodynamic characteristics. Notably, the interplay of instantaneous static temperature and fluid properties, along with the cascading nature of energy in turbulent flows, underpins the observed correlation. Furthermore, we leveraged a high-performance, scalable volumetric particle advection scheme for LCS determination in subsonic (M∞ = 0.8) and supersonic (M∞ = 1.6) turbulent boundary layers over adiabatic flat plates. 
    more » « less
  5. The laminar boundary layer of a viscous incompressible fluid subject to a two-dimensional wall curvature is evaluated. It is well known that a curved surface induces streamwise pressure gradient as well as wall curvature driven pressure gradient. Under certain assumptions, a family of similarity solutions can be obtained under the influence of flow acceleration/deceleration, which is known as the Falkner-Skan similarity solutions. In this study, the effect of the wall normal pressure gradient is taken into consideration, and the freestream flow parameters are adjusted for flow over a curved surface. Present results are obtained by numerical solution of a generalized Falkner-Skan equation governing similar solutions for flows over curved surfaces. The Falkner-Skan equations are solved by an RK4 shooting algorithm. Additionally, the transport of a passive scalar is incorporated in the present analysis at different Prandtl numbers. The objective of this paper is to use the curvilinear or axisymmetric boundary layer and energy equations to assess the effect of Favorable, Adverse and Zero pressure gradient on the laminar momentum and thermal boundary layer development. Major conclusions are summarized as follows: (i) as the pressure gradient β increases from negative values (APG) towards positive (FPG) values, the displacement (Δ∗) and momentum (θ∗) thickness tend to decrease no matter the curvature type, and, (ii) the normalized wall shear stress (i.e., f′′) exhibits a linear decreasing behavior as the wall curvature switches from concave (negative) to convex (positive) at a constant pressure gradient. 
    more » « less