Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The study presents an innovative pipeline for processing, compressing, and remotely visualizing large-scale numerical simulations of fluid dynamics in a virtual wind tunnel (VWT), leveraging Virtual and Augmented Reality (VR/AR) for enhanced analysis and high-end visualization. The workflow addresses the challenges of handling massive databases obtained via Direct Numerical Simulation (DNS) while maintaining visual fidelity, promoting full immersion, and ensuring efficient rendering for user interaction. We are performing fully immersive visualization of high-fidelity numerical results of supersonic spatially-developing turbulent boundary layers (SDTBL) under strong concave/convex curvatures at a freestream Mach number of 2.86 (i.e., supersonic flow). The selected numerical tool is Direct Numerical Simulation (DNS) with high spatial/temporal resolution. The comprehensive DNS information sheds important light on the transport phenomena inside turbulent boundary layers subject to strong deceleration or Adverse Pressure Gradient (APG) caused by concave walls as well as to strong acceleration or Favorable Pressure Gradient (FPG) caused by convex walls at different wall thermal conditions (i.e., Cold, Adiabatic and Hot walls). The process begins with .vts file input from DNS, which is visualized using the ParaView software. Multiple iso-contours for parameters such as velocity and temperature are generated, applying custom formulas to create visualizations at various floating-point precisions (16-bit, 32-bit, 64-bit). These visualizations, representing different fluid behaviors based on DNS with high spatial/temporal resolution and millions of “numerical sensors”, are treated as individual time frames and exported in GLTF format. Our approach demonstrates significant improvements in rendering speed and user experience, particularly when dealing with datasets comprising hundreds of high-resolution frames from Computational Fluid Dynamics (CFD) simulations. By utilizing server-side compression and cloud rendering, we overcome the limitations of on-device processing, enabling smooth and responsive interactions even with large, complex fluid dynamics datasets. This pipeline represents a substantial advancement in scientific visualization of fluid dynamics, offering researchers and engineers a powerful tool for exploring and analyzing large-scale CFD simulations in an immersive, intuitive environment. Additionally, we leverage Unity’s Profile Analyzer and Memory Profiling tools with the purpose of identifying major bottlenecks and resource-consuming events during contour running, with a keen focus on enhancing GPU and CPU efficiency. In conclusion, the materials and methods employed in this project were instrumental in systematically collecting, analyzing, and interpreting performance data from DNS databases. Future work will focus on optimizing compression algorithms for fluid-specific data and expanding the range of supported simulation parameters to enhance the pipeline’s versatility across various fluid dynamics applications.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Free, publicly-accessible full text available May 5, 2026
-
Free, publicly-accessible full text available April 23, 2026
-
A transient stability flow analysis is performed using the unsteady laminar boundary layer equations. The flow dynamics are studied via the Navier–Stokes equations. In the case of external spatially developing flow, the differential equations are reduced via Prandtl or boundary-layer assumptions, consisting of continuity and momentum conservation equations. Prescription of streamwise pressure gradients (decelerating and accelerating flows) is carried out by an impulsively started Falkner–Skan (FS) or wedge-flow similarity flow solution in the case of flat plate or a Blasius solution for particular zero-pressure gradient case. The obtained mean streamwise velocity and its derivatives from FS flows are then inserted into the well-known Orr–Sommerfeld equation of small disturbances at different dimensionless times (τ). Finally, the corresponding eigenvalues are dynamically computed for temporal stability analysis. A finite difference algorithm is effectively applied to solve the Orr–Sommerfeld equations. It is observed that flow acceleration or favorable pressure gradients (FPGs) lead to a significantly shorter transient period before reaching steady-state conditions, as the developed shear layer is notably thinner compared to cases with adverse pressure gradients (APGs). During the transient phase (i.e., for τ<1), the majority of the flow modifications are confined to the innermost 20–25% of the boundary layer, in proximity to the wall. In the context of temporal flow stability, the magnitude of the pressure gradient is pivotal in determining the streamwise extent of the Tollmien–Schlichting (TS) waves. In highly accelerated laminar flows, these waves experience considerable elongation. Conversely, under the influence of a strong adverse pressure gradient, the characteristic streamwise length of the smallest unstable wavelength, which is necessary for destabilization via TS waves, is significantly reduced. Furthermore, flows subjected to acceleration (β > 0) exhibit a higher propensity to transition towards a more stable state during the initial transient phase. For instance, the time response required to reach the steady-state critical Reynolds number was approximately 1τ for β = 0.18 (FPG) and τ = 6.8 for β = −0.18 (APG).more » « lessFree, publicly-accessible full text available April 1, 2026
-
An Algebraic Domain Reprojection, Deep Learning and DNS-Data-Driven Approach for Turbulence ModelingFree, publicly-accessible full text available January 3, 2026
-
Free, publicly-accessible full text available January 3, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
COMPRESSIBILITY EFFECT ON POD MODES OVER ZERO-PRESSURE GRADIENT FLAT PLATE TURBULENT BOUNDARY LAYERSFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available September 1, 2025