skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Proaromaticity on Excited-State Lifetimes and Charge Separation in Near-Infrared Sensitizer Dyes in Solution and on TiO 2
Award ID(s):
1954922 1757220 2154403
PAR ID:
10415308
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
127
Issue:
1
ISSN:
1932-7447
Page Range / eLocation ID:
649 to 659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nanohybrids based on van der Waals (vdW) heterostructures of two dimensional (2D) atomic materials have recently emerged as a unique scheme for designing high‐performance quantum sensors. This work explores vdW nanohybrids for photodetection, which consist of graphene decorated with intermingled transition‐metal dichalcogenide (TMDC) nanodiscs (TMDC‐NDs) obtained using wafer‐size, layer‐by‐layer growth. The obtained TMDC‐NDs/graphene nanohybrids take advantage of strong quantum confinement in graphene for high charge mobility and hence high photoconductive gain, and localized surface plasmonic resonance (LSPR) enabled on the TMDC‐NDs for enhanced light absorption. Since the LSPR depends on the nanostructure's size and density, intermingled TMDC‐NDs of different kinds of TMDCs, such as WS2(W) and MoS2(M), have been found to allow small‐size, high‐concentration TMDC‐NDs to be achieved for high photoresponse. Remarkably, high photoresponsivity up to 31 A/W (550 nm wavelength and 20 µW cm−2light intensity) has been obtained on the WMW‐NDs/graphene nanohybrids photodetectors made using three consecutive coatings of WS2(1st and 3rd coating) and MoS2(2nd coating), which is considerably higher by a factor of ≈4 than that of the counterparts MoS2‐ND/graphene or WS2‐NDs/graphene devices. This result provides a facile approach to control the size and concentration of the TMDC‐NDs for high‐performance, low‐cost optoelectronic device applications. 
    more » « less
  2. null (Ed.)