skip to main content


This content will become publicly available on June 25, 2024

Title: Development of a Product Pipeline System to Teach Industrial Manufacturing Automation
Our modern age is being forged by industrialization and automation. Processes that once required tedious handwork can now be completed with higher efficiency and consistent quality by machines and facilities that perform their operations automatically. Examples of automation technology in our daily lives are found in households where washing machines are used, on the streets where traffic lights regulate traffic, or even in buildings that use air-conditioning units and automatic lighting systems. Open-loop control systems or closed-loop control systems are used in all these systems to determine a predefined sequence of processing steps. The Industrial Manufacturing System (IMS) developed at the college intends to address the need for education. This project introduces how the production assembly line develops. The system consists of Sorting, Assembly, Processing, Testing, Storage, and Buffering operations. The Siemens Simatic PLC (Programmable Logic Controller) S7-300 is used in the manufacturing system and TIA (Total Integrated Automation) Portal is used as the programming environment. This project focuses on the automation of an industrial manufacturing system through several tools such as PLC, TIA PORTAL (V16), and PROFIBUS. The control of the whole system is implemented by using Siemens Sematic PLC. The main objective of this project is to create a fully automated production line for college education. The system consists of Buffering, Sorting, Assembly, Processing, Testing, Handling, and Storage to minimize the risk to workers’ health [1] and the occurrence of accidents and increase production efficiency.  more » « less
Award ID(s):
2202107
NSF-PAR ID:
10415325
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 130th ASEE Annual Conference and Exposition, June 25-28, 2023, Baltimore, MD
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kazarinoff, Peter (Ed.)
    Siemens DI believes the future of manufacturing must be taught in our schools today. To facilitate this, we provide several educational programs that partner with technical colleges to provide hands-on learning and experience on our automation software and hardware. These programs include Siemens Cooperates with Education (SCE), Siemens Mechatronics Systems Certification Program (SMSCP), Lifelong Educational Advantage Program (LEAP), and Siemens Go-PLM. Participating as an industrial employer with the Preparing Technicians for the Future of Work ATE project team has provided Siemens with the ability to contribute to the tactile execution of educational priorities and influence the strategic direction of industry’s collaboration with educational institutions in a positive fashion. The ability to share concepts and practices with others in industry has contributed to changes in our approaches to educational partners and customer conversations. 
    more » « less
  2. Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessions were focused on materials and inventory planning, production economics, manufacturing quality, non-destructive evaluation, statistical process control, and lean/ sixsigma. The continuing education programs and course materials were developed based on the feedback from the industry advisory board for the Manufacturing Center of Excellence at Houston Community College, which is a collaborating partner on the ATE Grant. As a part of assessment of the programs, industry participants in the both sessions were given comprehensive surveys asking for their feedback on the applicability of the educational sessions. Overall, the participants rated the sessions very highly on the organization and the relevancy of the program topics and learning materials. The participants also felt that they learned new information through these programs. 
    more » « less
  3. The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project. 
    more » « less
  4. The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project. 
    more » « less
  5. Programmable Logic Controllers are an integral component for managing many different industrial processes (e.g., smart building management, power generation, water and wastewater management, and traffic control systems), and manufacturing and control industries (e.g., oil and natural gas, chemical, pharmaceutical, pulp and paper, food and beverage, automotive, and aerospace). Despite being used widely in many critical infrastructures, PLCs use protocols which make these control systems vulnerable to many common attacks, including man-in-the-middle attacks, denial of service attacks, and memory corruption attacks (e.g., array, stack, and heap overflows, integer overflows, and pointer corruption). In this paper, we propose PLC-PROV, a system for tracking the inputs and outputs of the control system to detect violations in the safety and security policies of the system. We consider a smart building as an example of a PLC-based system and show how PLC-PROV can be applied to ensure that the inputs and outputs are consistent with the intended safety and security policies. 
    more » « less