skip to main content


Title: The Spitzer Extragalactic Representative Volume Survey and DeepDrill extension: clustering of near-infrared galaxies
ABSTRACT

We have measured the angular autocorrelation function of near-infrared galaxies in SERVS + DeepDrill, the Spitzer Extragalactic Representative Volume Survey and its follow-up survey of the Deep Drilling Fields, in three large fields totalling over 20 deg2 on the sky, observed in two bands centred on 3.6 and 4.5 μm. We performed this analysis on the full sample as well as on sources selected by [3.6]–[4.5] colour in order to probe clustering for different redshift regimes. We estimated the spatial correlation strength as well, using the redshift distribution from S-COSMOS with the same source selection. The strongest clustering was found for our bluest subsample, with 〈z〉 ∼ 0.7, which has the narrowest redshift distribution of all our subsamples. We compare these estimates to previous results from the literature, but also to estimates derived from mock samples, selected in the same way as the observational data, using deep light-cones generated from the SHARK semi-analytical model of galaxy formation. For all simulated (sub)samples, we find a slightly steeper slope than for the corresponding observed ones, but the spatial clustering length is comparable in most cases.

 
more » « less
NSF-PAR ID:
10415380
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 251-269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Covering $\sim 5600\, \deg ^2$ to rms sensitivities of ∼70−100 $\mu$Jy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of $0.5 \le \theta \lt 5{^\circ }$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $b_{\rm C}= 2.14^{+0.22}_{-0.20}$ (assuming constant bias) and $b_{\rm E}(z=0)= 1.79^{+0.15}_{-0.14}$ (for an evolving model, inversely proportional to the growth factor), corresponding to $b_{\rm E}= 2.81^{+0.24}_{-0.22}$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $b_{\rm C}= 2.02^{+0.17}_{-0.16}$ and $b_{\rm E}(z=0)= 1.67^{+0.12}_{-0.12}$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.

     
    more » « less
  2. Abstract We constrain the distribution of spatially offset Lyman-alpha emission (Ly α) relative to rest-frame ultraviolet emission in ∼300 high redshift (3 < z < 5.5) Lyman-break galaxies (LBGs) exhibiting Ly α emission from VANDELS, a VLT/VIMOS slit-spectroscopic survey of the CANDELS Ultra Deep Survey and Chandra Deep Field South fields (≃0.2 deg2 total). Because slit spectroscopy only provides one spatial dimension, we use Bayesian inference to recover the underlying two-dimensional Ly α spatial offset distribution. We model the distribution using a two-dimensional circular Gaussian, defined by a single parameter σr,Ly α, the standard deviation expressed in polar coordinates. Over the entire redshift range of our sample (3 < z < 5.5), we find $\sigma _{r,\mathrm{Ly}\,\alpha }=1.70^{+0.09}_{-0.08}$ kpc ($68\hbox{ per cent}$ conf.), corresponding to ∼0${^{\prime\prime}_{.}}$25 at 〈z〉 = 4.5. We also find that σr,Ly α decreases significantly with redshift. Because Ly α spatial offsets can cause slit losses, the decrease in σr,Ly α with redshift can partially explain the increase in the fraction of Ly α emitters observed in the literature over this same interval, although uncertainties are still too large to reach a strong conclusion. If σr,Ly α continues to decrease into the reionization epoch, then the decrease in Ly α transmission from galaxies observed during this epoch might require an even higher neutral hydrogen fraction than what is currently inferred. Conversely, if spatial offsets increase with the increasing opacity of the intergalactic medium, slit losses may explain some of the drop in Ly α transmission observed at z > 6. Spatially resolved observations of Ly α and UV continuum at 6 < z < 8 are needed to settle the issue. 
    more » « less
  3. ABSTRACT

    We present the spectroscopic confirmation of the brightest known gravitationally lensed Lyman-break galaxy in the Epoch of Reionization (EoR), A1703-zD1, through the detection of [C ii] 158 $\mu$m at a redshift of z = 6.8269 ± 0.0004. This source was selected behind the strong lensing cluster Abell 1703, with an intrinsic luminosity and a very blue Spitzer/Infrared Array Camera (IRAC) [3.6]–[4.5] colour, implying high equivalent width line emission of [O iii] + Hβ. [C ii] is reliably detected at 6.1σ cospatial with the rest-frame ultraviolet (UV) counterpart, showing similar spatial extent. Correcting for the lensing magnification, the [C ii] luminosity in A1703-zD1 is broadly consistent with the local $L_{\rm [C\, {\small II}]}$–star formation rate (SFR) relation. We find a clear velocity gradient of 103 ± 22 km $\rm s^{-1}$ across the source that possibly indicates rotation or an ongoing merger. We furthermore present spectral scans with no detected [C ii] above 4.6σ in two unlensed Lyman-break galaxies in the Extended Groth Strip (EGS)-Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field at z ∼ 6.6–6.9. This is the first time that the Northern Extended Millimeter Array (NOEMA) has been successfully used to observe [C ii] in a ‘normal’ star-forming galaxy at z > 6, and our results demonstrate its capability to complement the Atacama Large Millimeter/submillimeter Array (ALMA) in confirming galaxies in the EoR.

     
    more » « less
  4. Abstract

    We describe the survey design and science goals for One-hundred-deg2DECam Imaging in Narrowbands (ODIN), a NOIRLab survey using the Dark Energy Camera (DECam) to obtain deep (AB ∼ 25.7) narrowband images over an unprecedented area of sky. The three custom-built narrowband filters,N419,N501, andN673, have central wavelengths of 419, 501, and 673 nm and respective FWHM of 7.5, 7.6, and 10.0 nm, corresponding to Lyαatz= 2.4, 3.1, and 4.5 and cosmic times of 2.8, 2.1, and 1.4 Gyr, respectively. When combined with even deeper, public broadband data from the Hyper Suprime-Cam, DECam, and in the future, the Legacy Survey of Space and Time, the ODIN narrowband images will enable the selection of over 100,000 Lyα-emitting (LAE) galaxies at these epochs. ODIN-selected LAEs will identify protoclusters as galaxy overdensities, and the deep narrowband images enable detection of highly extended Lyαblobs (LABs). Primary science goals include measuring the clustering strength and dark matter halo connection of LAEs, LABs, and protoclusters, and their respective relationship to filaments in the cosmic web. The three epochs allow for the redshift evolution of these properties to be determined during the period known as Cosmic Noon, where star formation was at its peak. The narrowband filter wavelengths are designed to enable interloper rejection and further scientific studies by revealing [Oii] and [Oiii] atz= 0.34, Lyαand Heii1640 atz= 3.1, and Lyman continuum plus Lyαatz= 4.5. Ancillary science includes similar studies of the lower-redshift emission-line galaxy samples and investigations of nearby star-forming galaxies resolved into numerous [Oiii] and [Sii] emitting regions.

     
    more » « less
  5. null (Ed.)
    Weak lensing measurements suffer from well-known shear estimation biases, which can be partially corrected for with the use of image simulations. In this work we present an analysis of simulated images that mimic Hubble Space Telescope/Advance Camera for Surveys observations of high-redshift galaxy clusters, including cluster specific issues such as non-weak shear and increased blending. Our synthetic galaxies have been generated to have similar observed properties as the background-selected source samples studied in the real images. First, we used simulations with galaxies placed on a grid to determine a revised signal-to-noise-dependent ( S / N KSB ) correction for multiplicative shear measurement bias, and to quantify the sensitivity of our KSB+ bias calibration to mismatches of galaxy or PSF properties between the real data and the simulations. Next, we studied the impact of increased blending and light contamination from cluster and foreground galaxies, finding it to be negligible for high-redshift ( z  >  0.7) clusters, whereas shear measurements can be affected at the ∼1% level for lower redshift clusters given their brighter member galaxies. Finally, we studied the impact of fainter neighbours and selection bias using a set of simulated images that mimic the positions and magnitudes of galaxies in Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) data, thereby including realistic clustering. While the initial SExtractor object detection causes a multiplicative shear selection bias of −0.028 ± 0.002, this is reduced to −0.016 ± 0.002 by further cuts applied in our pipeline. Given the limited depth of the CANDELS data, we compared our CANDELS-based estimate for the impact of faint neighbours on the multiplicative shear measurement bias to a grid-based analysis, to which we added clustered galaxies to even fainter magnitudes based on Hubble Ultra Deep Field data, yielding a refined estimate of ∼ − 0.013. Our sensitivity analysis suggests that our pipeline is calibrated to an accuracy of ∼0.015 once all corrections are applied, which is fully sufficient for current and near-future weak lensing studies of high-redshift clusters. As an application, we used it for a refined analysis of three highly relaxed clusters from the South Pole Telescope Sunyaev-Zeldovich survey, where we now included measurements down to the cluster core ( r  >  200 kpc) as enabled by our work. Compared to previously employed scales ( r  >  500 kpc), this tightens the cluster mass constraints by a factor 1.38 on average. 
    more » « less