skip to main content


Title: A matter of size? Material, structural and mechanical strategies for size adaptation in the elytra of Cetoniinae beetles
Award ID(s):
1757618
NSF-PAR ID:
10415445
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Acta Biomaterialia
Volume:
122
Issue:
C
ISSN:
1742-7061
Page Range / eLocation ID:
236 to 248
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The effective population size (Ne) of an organism is expected to be generally proportional to the total number of individuals in a population. In parasites, we might expect the effective population size to be proportional to host population size and host body size, because both are expected to increase the number of parasite individuals. However, among other factors, parasite populations are sometimes so extremely subdivided that high levels of inbreeding may distort these predicted relationships. Here, we used whole-genome sequence data from dove parasites (71 feather louse species of the genus Columbicola) and phylogenetic comparative methods to study the relationship between parasite effective population size and host population size and body size. We found that parasite effective population size is largely explained by host body size but not host population size. These results suggest the potential local population size (infrapopulation or deme size) is more predictive of the long-term effective population size of parasites than is the total number of potential parasite infrapopulations (i.e., host individuals).

     
    more » « less
  2. Given a family of sets (S1, S2,... SM) over a universe Ω, estimating the size of their union in the data streaming model is a fundamental computational problem with a wide variety of applications. The holy grail in the field of streaming is to seek design of algorithms that achieve (ε, δ)-approximation with poly(log |Ω|, ε-1, log δ-1) space and update time complexity. Earlier investigations achieve algorithms with desired space and update time complexity for restricted cases such as singletons (Distinct Elements problem), one-dimensional ranges, arithmetic progressions, and sub-cubes. However, techniques used in these works fail for many other simple structured sets. A prominent example is that of Klee's Measure Problem (KMP), wherein every set Si is represented by an axis-parallel rectangle in d-dimensional spaces. Despite extensive prior work, the best-known streaming algorithms for many of these cases depend on the size of the stream, and therefore the problem of whether there exists a streaming algorithm for estimations of size of the union of sets with poly(log |Ω|, ε-1, log δ-1) space and update time complexity has remained open. In this work, we focus on certain general families of sets called Delphic families (which allows efficient membership, sampling, and cardinality queries). Such families of sets capture several well-known problems, including KMP, test coverage, and hypervolume estimation. The primary contribution of our work is to resolve the above-mentioned open problem for streams over Delphic families. In particular, we design the first streaming algorithm for estimating |⋃i=1M Si| with poly(log |Ω|, ε-1, log δ-1) space and update time complexity (independent of M, the length of the stream) when each Si is a member from a Delphic family of sets. We further generalize our results to larger families of sets, called approximate-Delphic families, for which the size of a set can be known approximately but not exactly. Our results resolve two of the open problems listed in Meel, Vinodchandran, Chakraborty (PODS-21). 
    more » « less
  3. Abstract

    Brain size, brain architecture, and eye size vary extensively in vertebrates. However, the extent to which the evolution of these components is intricately connected remains unclear. Trinidadian killifish,Anablepsoides hartii, are found in sites that differ in the presence and absence of large predatory fish. Decreased rates of predation are associated with evolutionary shifts in brain size; males from sites without predators have evolved a relatively larger brain and eye size than males from sites with predators. Here, we evaluated the extent to which the evolution of brain size, brain structure, and eye size covary in male killifish. We utilized wild‐caught and common garden‐reared specimens to determine whether specific components of the brain have evolved in response to differences in predation and to determine if there is covariation between the evolution of brain size, brain structure, and eye size. We observed consistent shifts in brain architecture in second generation common garden reared, but not wild caught preserved fish. Male killifish from sites that lack predators exhibited a significantly larger telencephalon, optic tectum, cerebellum, and dorsal medulla when compared with fish from sites with predators. We also found positive connections between the evolution of brain structure and eye size but not between overall brain size and eye size. These results provide evidence for evolutionary covariation between the components of the brain and eye size. Such results suggest that selection, directly or indirectly, acts upon specific regions of the brain, rather than overall brain size, to enhance visual capabilities.

     
    more » « less