skip to main content


Title: Host body size, not host population size, predicts genome-wide effective population size of parasites
Abstract

The effective population size (Ne) of an organism is expected to be generally proportional to the total number of individuals in a population. In parasites, we might expect the effective population size to be proportional to host population size and host body size, because both are expected to increase the number of parasite individuals. However, among other factors, parasite populations are sometimes so extremely subdivided that high levels of inbreeding may distort these predicted relationships. Here, we used whole-genome sequence data from dove parasites (71 feather louse species of the genus Columbicola) and phylogenetic comparative methods to study the relationship between parasite effective population size and host population size and body size. We found that parasite effective population size is largely explained by host body size but not host population size. These results suggest the potential local population size (infrapopulation or deme size) is more predictive of the long-term effective population size of parasites than is the total number of potential parasite infrapopulations (i.e., host individuals).

 
more » « less
Award ID(s):
1926919 1925487
NSF-PAR ID:
10421290
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution Letters
Volume:
7
Issue:
4
ISSN:
2056-3744
Page Range / eLocation ID:
p. 285-292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Parasites may influence their hosts in multiple ways, ranging from physiological changes and behavioral modifications, to altering life history traits. One fitness component that is often considered in relation to parasitism is host fecundity. The larval acanthocephalan parasite,Profilicollis altmani, commonly infects the Pacific mole crab,Emerita analoga; yet this parasite's effect on the crab's fecundity is unknown. Consequently, we examined the effects of acanthocephalan parasitism on the fecundity of this mole crab species. Crabs were collected from the swash intertidal zone in Monterey Bay, CA, and the following parameters were quantified: crab body size (carapace length) and weight, egg‐bearing status (nongravid and gravid), egg number and diameter, total volume and weight of egg mass, and their developmental stages (from newly laid eggs to recognizable zoea larval stage). Parasite prevalence, intensity of infection, and body size of larval cystacanths (measured as volume) were assessed. Host fecundity was positively correlated with both body size and body weight. No differences in egg weight were found between uninfected and infected crabs. Similarly, no difference in crab body weight at various embryonic developmental phases was documented between uninfected and infected crabs. Cystacanth volumes in infected nongravid and infected gravid crabs were not significantly different. Our study suggests that the parasiteP. altmanidoes not have any appreciable effect on the fecundity ofE. analogaand that female mole crabs undergo normal reproduction and maintain robust population sizes in their natural environments. Our findings thus appear to moderate the pervasive notion of a major impact of parasitism on host reproduction.

     
    more » « less
  2. Social interactions with conspecifics are key to the fitness of most animals and, through the transmission opportunities they provide, are also key to the fitness of their parasites. As a result, research to date has largely focused on the role of host social behavior in imposing selection on parasites, particularly their virulence and transmission phenotypes. However, host social behavior also influences the distribution of parasites among hosts, with implications for their evolution through non-random mating, gene flow, and genetic drift, and thus ability to respond to that selection. Here, we review the paucity of empirical studies on parasites, and draw from empirical studies of free-living organisms and population genetic theory to propose several mechanisms by which host social behavior potentially drives parasite evolution through these less-well studied mechanisms. We focus on the guppy host and Gyrodactylus (Monogenea) ectoparasitic flatworm system and follow a spatially hierarchical outline to highlight that social behavior varies between individuals, and between host populations across the landscape, generating a mosaic of ecological and evolutionary outcomes for their infecting parasites. We argue that the guppy-Gyrodactylus system presents a unique opportunity to address this fundamental knowledge gap in our understanding of the connection between host social behavior and parasite evolution. Individual differences in host social behavior generates fine-scale changes in the spatial distribution of parasite genotypes, shape the size, and diversity of their infecting parasite populations and may generate non-random mating on, and non-random transmission between hosts. While at population and metapopulation level, variation in host social behavior interacts with landscape structure to affect parasite gene flow, effective population size, and genetic drift to alter the coevolutionary potential of local adaptation. 
    more » « less
  3. Vermeij, Geerat J. (Ed.)
    Rapid warming and sea-level rise are predicted to be major driving forces in shaping coastal ecosystems and their services in the next century. Though forecasts of the multiple and complex effects of temperature and sea-level rise on ecological interactions suggest negative impacts on parasite diversity, the effect of long term climate change on parasite dynamics is complex and unresolved. Digenean trematodes are complex life cycle parasites that can induce characteristic traces on their bivalve hosts and hold potential to infer parasite host-dynamics through time and space. Previous work has demonstrated a consistent association between sea level rise and increasing prevalence of trematode traces, but a number of fundamental questions remain unanswered about this paleoecological proxy. Here we examine the relationships of host size, shape, and functional morphology with parasite prevalence and abundance, how parasites are distributed across hosts, and how all of these relationships vary through time, using the bivalve Chamelea gallina from a Holocene shallow marine succession in the Po coastal plain. Trematode prevalence increased and decreased in association with the transition from a wave-influenced estuarine system to a wave-dominated deltaic setting. Prevalence and abundance of trematode pits are associated with large host body size, reflecting ontogenetic accumulation of parasites, but temporal trends in median host size do not explain prevalence trends. Ongoing work will test the roles of temperature, salinity, and nutrient availability on trematode parasitism. Parasitized bivalves in one sample were shallower burrowers than their non-parasitized counterparts, suggesting that hosts of trematodes can be more susceptible to their predators, though the effect is ephemeral. Like in living parasite-host systems, trematode-induced malformations are strongly aggregated among hosts, wherein most host individuals harbor very few parasites while a few hosts have many. We interpret trace aggregation to support the assumption that traces are a reliable proxy for trematode parasitism in the fossil record. 
    more » « less
  4. Abstract

    External perturbations, such as multispecies infections or anthelmintic treatments, can alter host–parasite interactions with consequences on the dynamics of infection. While the overall profile of infection might appear fundamentally conserved at the host population level, perturbations can disproportionately affect components of parasite demography or host responses, and ultimately impact parasite fitness and long‐term persistence.

    We took an immuno‐epidemiological approach to this reasoning and examined a rabbit–helminth system where animals were trickle‐dosed with either one or two helminth species, treated halfway through the experiment with an anthelmintic and reinfected one month later following the same initial regime. Parasite traits (body length and fecundity) and host immune responses (cytokines, transcription factors, antibodies) were quantified at fixed time points and compared before and after drug treatment, and between single and dual infections.

    Findings indicated a resistant host phenotype toTrichostrongylus retortaeformiswhere abundance, body length, and fecundity were regulated by a protective immune response. In contrast,Graphidium strigosumaccumulated in the host and, while it stimulated a clear immune reaction, many genes were downregulated both following reinfection and in dual infection, suggestive of a low host resistance.

    External perturbations affected parasite fecundity, including body length and number of eggs in utero, more significantly than abundance; however, there was no consistency in the parasite‐immune relationships.

    Disentangling the processes affecting parasite life history, and how they relate to host responses, can provide a better understanding of how external disturbances impact disease severity and transmission, and how parasites strategies adjust to secure persistence at the host and the population level.

     
    more » « less
  5. Abstract

    Introduced hosts are capable of introducing parasite species and altering the abundance of parasites that are already present in native hosts, but few studies have compared the tolerances of native and invasive hosts to introduced parasites or identified the traits of introduced hosts that make them supershedders of non‐native parasites.

    Here, we compare the effects of a nematodeAplectana hamatospiculathat is native to Cuba but appears to be introduced to Florida on the native Floridian treefrog,Hyla femoralis, and on the Cuban treefrog (CTF),Osteopilus septentrionalis. We were particularly interested in CTFs because their introduction to Florida has led to reported declines of native treefrogs.

    In the laboratory, infection withA. hamatospiculacaused a greater loss in body mass ofH. femoralisthan CTFs despiteH. femoralisshedding fewer total worms in their faeces than CTFs. Field collections of CTFs,H. femoralis, and another native Floridian treefrog,H.squirella(Squirrel treefrog) from Tampa, FL also showed that CTFs shed more larval worms in their faeces than both native frogs when controlling for body size. Hence, the non‐native CTF is a supershedder of this non‐native parasite that is spilling over to less tolerant native treefrogs.

    Any conservation intervention to reduce the effects of CTFs on native treefrogs would benefit from knowing the traits that contribute to the invasive host being a supershedder of this parasite. Hence, we conducted necropsies on 330 CTFs to determine how host sex and body size affect the abundance ofA. hamatospicula, and two other common parasites in this species (acuariid nematodes and trematode metacercariae).

    There was a significant linear increase inA. hamatospiculaand encysted acuariids with CTF body size, but there was no detectable relationship between host body size and the intensity of metacercariae. Female CTFs were bigger, lived longer and, on average, had moreA. hamatospiculathan male CTFs.

    Synthesis and applications. These results of the study suggest that there is parasite spillover from the invasive Cuban treefrog (CTF) to native treefrogs in Florida. Additionally, at least some of the adverse effects of CTFs on native treefrogs could be caused by the introduction and amplification of this introduced parasite, and female and larger CTFs seem to be amplifying these infections more than males and smaller CTFs, respectively, suggesting that management could benefit from targeting these individuals.

     
    more » « less