Context. The host galaxy conditions for rapid supermassive black hole growth are poorly understood. Narrow-line Seyfert 1 (NLS1) galaxies often exhibit high accretion rates and are hypothesized to be prototypes of active galactic nuclei (AGN) at an early stage of their evolution. Aims. We present adaptive optics (AO) assisted VLT MUSE NFM observations of Mrk 1044, the nearest super-Eddington accreting NLS1. Together with archival MUSE WFM data, we aim to understand the host galaxy processes that drive Mrk 1044’s black hole accretion. Methods. We extracted the faint stellar continuum emission from the AGN-deblended host and performed spatially resolved emission line diagnostics with an unprecedented resolution. Combining both MUSE WFM and NFM-AO observations, we used a kinematic model of a thin rotating disk to trace the stellar and ionized gas motion from 10 kpc galaxy scales down to ∼30 pc around the nucleus. Results. Mrk 1044’s stellar kinematics follow circular rotation, whereas the ionized gas shows tenuous spiral features in the center. We resolve a compact star-forming circumnuclear ellipse (CNE) that has a semi-minor axis of 306 pc. Within this CNE, the gas is metal-rich and its line ratios are entirely consistent with excitation by star formation. With an integrated star formation rate of 0.19 ± 0.05 M ⊙ yr −1 , the CNE contributes 27% of the galaxy-wide star formation. Conclusions. We conclude that Mrk 1044’s nuclear activity has not yet affected the circumnuclear star formation. Thus, Mrk 1044 is consistent with the idea that NLS1s are young AGN. A simple mass budget consideration suggests that the circumnuclear star formation and AGN phase are connected and the patterns in the ionized gas velocity field are a signature of the ongoing AGN feeding.
more »
« less
The Close AGN Reference Survey (CARS): A parsec-scale multi-phase outflow in the super-Eddington NLS1 Mrk 1044
Context. The interaction between active galactic nuclei (AGNs) and their host galaxies is scarcely resolved. Narrow-line Seyfert 1 (NLS1) galaxies are believed to represent AGN at early stages of their evolution and to allow one to observe feeding and feedback processes at high black hole accretion rates. Aims. We aim to constrain the properties of the ionised gas outflow in Mrk 1044, a nearby super-Eddington accreting NLS1. Based on the outflow energetics and the associated timescales, we estimate the outflow’s future impact on the ongoing host galaxy star formation on different spatial scales. Methods. We applied a spectroastrometric analysis to observations of Mrk 1044’s nucleus obtained with the adaptive-optics-assisted narrow field mode of the VLT/MUSE instrument. This allowed us to map two ionised gas outflows traced by [O III ], which have velocities of −560 ± 20 km s −1 and −144 ± 5 km s −1 . Furthermore, we used an archival spectrum from the Space Telescope Imaging Spectrograph on HST to identify two Ly- α absorbing components that escape from the centre with approximately twice the velocity of the ionised gas components. Results. Both [O III ] outflows are spatially unresolved and located close to the AGN (< 1 pc). They have gas densities higher than 10 5 cm −3 , which implies that the BPT diagnostic cannot be used to constrain the underlying ionisation mechanism. We explore whether an expanding shell model can describe the velocity structure of Mrk 1044’s multi-phase outflow. In the ionised gas emission, an additional outflowing component, which is spatially resolved, is present. It has a velocity of −211 ± 22 km s −1 and a projected size of 4.6 ± 0.6 pc. Our kinematic analysis suggests that significant turbulence is present in the interstellar medium around the nucleus, which may lead to a condensation rain, potentially explaining the efficient feeding of Mrk 1044’s AGN. Within the innermost 0.5″ (160 pc), we detect modest star formation hidden by the beam-smeared emission from the outflow. Conclusions. We estimate that the multi-phase outflow was launched < 10 4 yr ago. Together with the star formation in the vicinity of the nucleus, this suggests that Mrk 1044’s AGN phase started only recently. The outflow carries enough mass and energy to impact the host galaxy star formation on different spatial scales, highlighting the complexity of the AGN feeding and feedback cycle in its early stages.
more »
« less
- Award ID(s):
- 1909297
- PAR ID:
- 10415545
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 670
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A ∼15 kpc outflow cone piercing through the halo of the blue compact metal-poor galaxy SBS 0335–052EContext. Outflows from low-mass star-forming galaxies are a fundamental ingredient for models of galaxy evolution and cosmology. Despite seemingly favourable conditions for outflow formation in compact starbursting galaxies, convincing observational evidence for kiloparsec-scale outflows in such systems is scarce. Aims. The onset of kiloparsec-scale ionised filaments in the halo of the metal-poor compact dwarf SBS 0335−052E was previously not linked to an outflow. In this paper we investigate whether these filaments provide evidence for an outflow. Methods. We obtained new VLT/MUSE WFM and deep NRAO/VLA B-configuration 21 cm data of the galaxy. The MUSE data provide morphology, kinematics, and emission line ratios of H β /H α and [O III ] λ 5007/H α of the low surface-brightness filaments, while the VLA data deliver morphology and kinematics of the neutral gas in and around the system. Both datasets are used in concert for comparisons between the ionised and the neutral phase. Results. We report the prolongation of a lacy filamentary ionised structure up to a projected distance of 16 kpc at SB H α = 1.5 × 10 −18 erg s cm −2 arcsec −2 . The filaments exhibit unusual low H α /H β ≈ 2.4 and low [O III ]/H α ∼ 0.4 − 0.6 typical of diffuse ionised gas. They are spectrally narrow (∼20 km s −1 ) and exhibit no velocity sub-structure. The filaments extend outwards from the elongated H I halo. On small scales, the N HI peak is offset from the main star-forming sites. The morphology and kinematics of H I and H II reveal how star-formation-driven feedback interacts differently with the ionised and the neutral phase. Conclusions. We reason that the filaments are a large-scale manifestation of star-formation- driven feedback, namely limb-brightened edges of a giant outflow cone that protrudes through the halo of this gas-rich system. A simple toy model of such a conical structure is found to be commensurable with the observations.more » « less
-
Abstract We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J = 3 − 2 at ∼0.″3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s −1 beyond systemic, equivalent to an estimated physical outflow velocity v ≳ 600 km s −1 for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO + J = 4 − 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate M ̇ mol ∼ 20 M ⊙ yr −1 flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN.more » « less
-
ABSTRACT We present a study of the stellar host galaxy, CO (1–0) molecular gas distribution and AGN emission on 50–500 pc-scales of the gravitationally lensed dust-obscured AGN MG J0751+2716 and JVAS B1938+666 at redshifts 3.200 and 2.059, respectively. By correcting for the lensing distortion using a grid-based lens modelling technique, we spatially locate the different emitting regions in the source plane for the first time. Both AGN host galaxies have 300–500 pc-scale size and surface brightness consistent with a bulge/pseudo-bulge, and 2 kpc-scale AGN radio jets that are embedded in extended molecular gas reservoirs that are 5–20 kpc in size. The CO (1–0) velocity fields show structures possibly associated with discs (elongated velocity gradients) and interacting objects (off-axis velocity components). There is evidence for a decrement in the CO (1–0) surface brightness at the location of the host galaxy, which may indicate radiative feedback from the AGN, or offset star formation. We find CO–H2 conversion factors of around αCO = 1.5 ± 0.5 (K km s−1 pc2)−1, molecular gas masses of >3 × 1010 M⊙, dynamical masses of ∼1011 M⊙, and gas fractions of around 60 per cent. The intrinsic CO line luminosities are comparable to those of unobscured AGN and dusty star-forming galaxies at similar redshifts, but the infrared luminosities are lower, suggesting that the targets are less efficient at forming stars. Therefore, they may belong to the AGN feedback phase predicted by galaxy formation models, because they are not efficiently forming stars considering their large amount of molecular gas.more » « less
-
Abstract The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii]λ5.34μm and [Arii]λ6.99μm lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ6.91μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii] ∼ 180 pc from the AGN that also show highL(H2)/L(PAH) andL([Feii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into the dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies.more » « less
An official website of the United States government

