skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Picolinic Acid-Mediated Catalysis of Mn(II) for Peracetic Acid Oxidation Processes: Formation of High-Valent Mn Species
Award ID(s):
2108701 2107967
PAR ID:
10415608
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
57
Issue:
47
ISSN:
0013-936X
Format(s):
Medium: X Size: p. 18929-18939
Size(s):
p. 18929-18939
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical oxidation of water and electrolyte ions is a sustainable method for producing energy carriers and valuable chemicals. Among known materials for catalyzing oxidation reactions, titanium dioxide (TiO 2 ) offers excellent electrochemical stability but is less active than many other metal oxides. Herein, we used density functional theory calculations to predict an increase in catalytic activity by doping anatase TiO 2 with manganese atoms (Mn). We synthesized Mn-doped TiO 2 and then utilized X-ray absorption spectroscopy to study the chemical environment around the Mn site in the TiO 2 crystal structure. Our electrochemical experiments confirmed that TiO 2 , with the optimal amount of Mn, reduces the onset potential by 260 mV in a 2 M KHCO 3 (pH = ∼8) electrolyte and 370 mV in a 0.5 M H 2 SO 4 (pH = ∼0.5) electrolyte. Moreover, in 0.5 M H 2 SO 4 , we observed that the amount of Mn doping greatly impacts the selectivity towards oxygen production versus peroxysulfate formation. In 2 M KHCO 3 , the Mn doping of TiO 2 slightly decreases the selectivity towards oxygen production and increases the hydrogen peroxide formation. The Mn-doped TiO 2 shows good electrochemical stability for over 24 hours in both electrolytes. 
    more » « less
  2. Diverse sources of wastewater organic carbon can be microbially funneled into biopolymers like polyhydroxybutyrate (PHB) that can be further valorized by conversion to hydrocarbon fuels and industrial chemicals. We report the vapor-phase dehydration and decarboxylation of PHB-derived monomer acids, 3-hydroxybutyric acid (3HB) and crotonic acid (CA), in water to propylene over solid acid catalysts using a packed-bed continuous-flow reactor. Propylene yields increase with increased Brønsted acidity of catalysts, with amorphous silica–alumina and niobium phosphate yielding 52 and 60 %C (percent feedstock carbon, max 75 %C) of feedstock 3HB and CA, respectively; additional products include CO 2 and retro-aldol products (acetaldehyde and acetic acid). Deactivation studies indicate progressive and permanent steam deactivation of amorphous silica–alumina, while re-calcination partially recovers niobium phosphate activity. Experiments demonstrating sustained reactor operation over niobium phosphate provide a promising technology pathway for increasing valorization of organic-rich wastewater. 
    more » « less