skip to main content


Title: Langmuir Turbulence Controls on Observed Diurnal Warm Layer Depths
Abstract

The turbulent ocean surface boundary layer (OSBL) shoals during daytime solar surface heating, developing a diurnal warm layer (DWL). The DWL significantly influences OSBL dynamics by trapping momentum and heat in a shallow near‐surface layer. Therefore, DWL depth is critical for understanding OSBL transport and ocean‐atmosphere coupling. A great challenge for determining DWL depth is considering wave‐driven Langmuir turbulence (LT), which increases vertical transport. This study investigates observations with moderate wind speeds (4–7 m/s at 10 m height) and swell waves for which breaking wave effects are less pronounced. By employing turbulence‐resolving large eddy simulation experiments that cover observed wind, wave, and heating conditions based on the wave‐averaged Craik‐Lebovich equation, we develop a DWL depth scaling unifying previous approaches. This scaling closely agrees with observed DWL depths from a year‐long mooring deployment in the subtropical North Atlantic, demonstrating the critical role of LT in determining DWL depth and OSBL dynamics.

 
more » « less
Award ID(s):
2316818
NSF-PAR ID:
10415624
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
10
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study utilizes a large-eddy simulation (LES) approach to systematically assess the directional variability of wave-driven Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) under tropical cyclones (TCs). The Stokes drift vector, which drives LT through the Craik–Leibovich vortex force, is obtained through spectral wave simulations. LT’s direction is identified by horizontally elongated turbulent structures and objectively determined from horizontal autocorrelations of vertical velocities. In spite of a TC’s complex forcing with great wind and wave misalignments, this study finds that LT is approximately aligned with the wind. This is because the Reynolds stress and the depth-averaged Lagrangian shear (Eulerian plus Stokes drift shear) that are key in determining the LT intensity (determined by normalized depth-averaged vertical velocity variances) and direction are also approximately aligned with the wind relatively close to the surface. A scaling analysis of the momentum budget suggests that the Reynolds stress is approximately constant over a near-surface layer with predominant production of turbulent kinetic energy by Stokes drift shear, which is confirmed from the LES results. In this layer, Stokes drift shear, which dominates the Lagrangian shear, is aligned with the wind because of relatively short, wind-driven waves. On the contrary, Stokes drift exhibits considerable amount of misalignments with the wind. This wind–wave misalignment reduces LT intensity, consistent with a simple turbulent kinetic energy model. Our analysis shows that both the Reynolds stress and LT are aligned with the wind for different reasons: the former is dictated by the momentum budget, while the latter is controlled by wind-forced waves.

     
    more » « less
  2. null (Ed.)
    Abstract Turbulence driven by wind and waves controls the transport of heat, momentum, and matter in the ocean surface boundary layer (OSBL). For realistic ocean conditions, winds and waves are often neither aligned nor constant, for example, when winds turn rapidly. Based on a Large Eddy Simulation (LES) method, which captures shear-driven turbulence (ST) and Langmuir turbulence (LT) driven by the Craik-Leibovich vortex force, we investigate the OSBL response to abruptly turning winds. We design idealized LES experiments, whose winds are initially constant to equilibrate OSBL turbulence before abruptly turning 90° either cyclonically or anticyclonically. The transient Stokes drift for LT is estimated from a spectral wave model. The OSBL response includes three successive stages that follow the change in direction. During stage 1, turbulent kinetic energy (TKE) decreases due to reduced TKE production. Stage 2 is characterized by TKE increasing with TKE shear production recovering and exceeding TKE dissipation. Transient TKE levels may exceed their stationary values due to inertial resonance and non-equilibrium turbulence. Turbulence relaxes to its equilibrium state at stage 3, but LT still adjusts due to slowly developing waves. During stages 1 and 2, greatly misaligned wind and waves lead to Eulerian TKE production exceeding Stokes TKE production. A Reynolds stress budget analysis and Reynolds-averaged Navier-Stokes equation models indicate that Stokes production furthermore drives the OSBL response. The Coriolis effects result in asymmetrical OSBL responses to wind turning directions. Our results suggest that transient wind conditions play a key role in understanding realistic OSBL dynamics. 
    more » « less
  3. Turbulent processes in the ocean surface boundary layer (OSBL) play a key role in weather and climate systems. This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation (LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave (BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically consistent with the SGS model of the LES. With LT, Lagrangian autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive mixing, and a coherent structure time. Coherent structures due to LT result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.

     
    more » « less
  4. Abstract

    Diurnal warm layers (DWLs) form near the surface of the ocean on days with strong solar radiation, weak to moderate winds, and small surface-wave effects. Here, we use idealized second-moment turbulence modeling, validated with large-eddy simulations (LES), to study the properties, dynamics, and energetics of DWLs across the entire physically relevant parameter space. Both types of models include representations of Langmuir turbulence (LT). We find that LT only slightly modifies DWL thicknesses and other bulk parameters under equilibrium wave conditions, but leads to a strong reduction in surface temperature and velocity with possible implications for air–sea coupling. Comparing tropical and the less frequently studied high-latitude DWLs, we find that LT has a strong impact on the energy budget and that rotation at high latitudes strongly modifies the DWL energetics, suppressing net energy turnover and entrainment. We identify the key nondimensional parameters for DWL evolution and find that the scaling relations of Price et al. provide a reliable representation of the DWL bulk properties across a wide parameter space, including high-latitude DWLs. We present different sets of revised model coefficients that include the deepening of the DWL due to LT and other aspects of our more advanced turbulence model to describe DWL properties at midday and during the DWL temperature peak in the afternoon, which we find to occur around 1500–1630 local time for a broad range of parameters.

     
    more » « less
  5. Currents in the ocean surface boundary layer (OSBL) determine the horizontal transport of submerged buoyant material, such as pollutants, plankton, and bubbles. Commonly, the mean horizontal transport, that is, the transport that changes the horizontal position of the material’s center of mass, is assumed to be accomplished by horizontal mean currents. However, surface convergence zones due to OSBL turbulence organize both wind-driven horizontal currents and near-surface concentrated buoyant material. In such surface convergence zones, concentrations of buoyant material are enhanced (e.g., apparent as windrows) and collocate with increased horizontal turbulent currents, here referred to as turbulent jets. In turn, the correlation of turbulent jet flow and material concentrations leads to a net mean horizontal transport due to turbulent motion. To examine this turbulent jet transport, an idealized model is devised for a wind-driven flow that is perturbed by prescribed cellular flow structures with crosswind surface convergence zones. Model solutions of the jet flow and material concentrations reveal that turbulent jet transport is comparable to the transport by horizontal mean currents for sufficiently strong cellular flow and material buoyancy. To test this model, we also perform more realistic turbulence-resolving large-eddy simulations (LESs) of wind and wave-driven OSBL turbulence. LES results are consistent with many features of the idealized model and suggest that the commonly overlooked turbulent jet transport is about 20%–50% of the traditional transport by horizontal mean currents. Thus, turbulent jet transport should be taken into account for accurate transport models of buoyant material in the OSBL.

     
    more » « less