skip to main content


Title: Diurnal Warm Layers in the Ocean: Energetics, Nondimensional Scaling, and Parameterization
Abstract

Diurnal warm layers (DWLs) form near the surface of the ocean on days with strong solar radiation, weak to moderate winds, and small surface-wave effects. Here, we use idealized second-moment turbulence modeling, validated with large-eddy simulations (LES), to study the properties, dynamics, and energetics of DWLs across the entire physically relevant parameter space. Both types of models include representations of Langmuir turbulence (LT). We find that LT only slightly modifies DWL thicknesses and other bulk parameters under equilibrium wave conditions, but leads to a strong reduction in surface temperature and velocity with possible implications for air–sea coupling. Comparing tropical and the less frequently studied high-latitude DWLs, we find that LT has a strong impact on the energy budget and that rotation at high latitudes strongly modifies the DWL energetics, suppressing net energy turnover and entrainment. We identify the key nondimensional parameters for DWL evolution and find that the scaling relations of Price et al. provide a reliable representation of the DWL bulk properties across a wide parameter space, including high-latitude DWLs. We present different sets of revised model coefficients that include the deepening of the DWL due to LT and other aspects of our more advanced turbulence model to describe DWL properties at midday and during the DWL temperature peak in the afternoon, which we find to occur around 1500–1630 local time for a broad range of parameters.

 
more » « less
NSF-PAR ID:
10496556
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
54
Issue:
4
ISSN:
0022-3670
Format(s):
Medium: X Size: p. 1037-1055
Size(s):
["p. 1037-1055"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The turbulent ocean surface boundary layer (OSBL) shoals during daytime solar surface heating, developing a diurnal warm layer (DWL). The DWL significantly influences OSBL dynamics by trapping momentum and heat in a shallow near‐surface layer. Therefore, DWL depth is critical for understanding OSBL transport and ocean‐atmosphere coupling. A great challenge for determining DWL depth is considering wave‐driven Langmuir turbulence (LT), which increases vertical transport. This study investigates observations with moderate wind speeds (4–7 m/s at 10 m height) and swell waves for which breaking wave effects are less pronounced. By employing turbulence‐resolving large eddy simulation experiments that cover observed wind, wave, and heating conditions based on the wave‐averaged Craik‐Lebovich equation, we develop a DWL depth scaling unifying previous approaches. This scaling closely agrees with observed DWL depths from a year‐long mooring deployment in the subtropical North Atlantic, demonstrating the critical role of LT in determining DWL depth and OSBL dynamics.

     
    more » « less
  2. null (Ed.)
    Binary neutron star mergers provide a unique probe of the dense-matter equation of state (EoS) across a wide range of parameter space, from the zero-temperature EoS during the inspiral to the high-temperature EoS following the merger. In this paper, we implement a new model for calculating parametrized finite-temperature EoS effects into numerical relativity simulations. This "M* model" is based on a two-parameter approximation of the particle effective mass and includes the leading-order effects of degeneracy in the thermal pressure and energy. We test our numerical implementation by performing evolutions of rotating single stars with zero- and non-zero temperature gradients, as well as evolutions of binary neutron star mergers. We find that our new finite-temperature EoS implementation can support stable stars over many dynamical timescales. We also perform a first parameter study to explore the role of the M* parameters in binary neutron star merger simulations. All simulations start from identical initial data with identical cold EoSs, and differ only in the thermal part of the EoS. We find that both the thermal profile of the remnant and the post-merger gravitational wave signal depend on the choice of M* parameters, but that the total merger ejecta depends only weakly on the finite-temperature part of the EoS across a wide range of parameters. Our simulations provide a first step toward understanding how the finite-temperature properties of dense matter may affect future observations of binary neutron star mergers. 
    more » « less
  3. Abstract Much of our conceptual understanding of midlatitude atmospheric motion comes from two-layer quasigeostrophic (QG) models. Traditionally, these QG models do not include moisture, which accounts for an estimated 30%–60% of the available energy of the atmosphere. The atmospheric moisture content is expected to increase under global warming, and therefore, a theory for how moisture modifies atmospheric dynamics is crucial. We use a two-layer moist QG model with convective adjustment as a basis for analyzing how latent heat release and large-scale moisture gradients impact the scalings of a midlatitude system at the synoptic scale. In this model, the degree of saturation can be tuned independently of other moist parameters by enforcing a high rate of evaporation from the surface. This allows for study of the effects of latent heat release at saturation, without the intrinsic nonlinearity of precipitation. At saturation, this system is equivalent to the dry QG model under a rescaling of both length and time. This predicts that the most unstable mode shifts to smaller scales, the growth rates increase, and the inverse cascade extends to larger scales. We verify these results numerically and use them to verify a framework for the complete energetics of a moist system. We examine the spectral features of the energy transfer terms. This analysis shows that precipitation generates energy at small scales, while dry dynamics drive a significant broadening to larger scales. Cascades of energy are still observed in all terms, albeit without a clearly defined inertial range. Significance Statement The effect of moist processes, especially the impact of latent heating associated with condensation, on the size and strength of midlatitude storms is not well understood. Such insight is particularly needed in the context of global warming, as we expect moisture to play a more important role in a warmer world. In this study, we provide intuition into how including condensation can result in midlatitude storms that grow faster and have features on both larger and smaller scales than their dry counterparts. We provide a framework for quantifying these changes and verify it for the special case where it is raining everywhere. These findings can be extended to the more realistic situation where it is only raining locally. 
    more » « less
  4. Abstract

    Estimates of turbulence kinetic energy (TKE) dissipation rate (ε) are key in understanding how heat, gas, and other climate‐relevant properties are transferred across the air‐sea interface and mixed within the ocean. A relatively new method involving moored pulse‐coherent acoustic Doppler current profilers (ADCPs) allows for estimates ofεwith concurrent surface flux and wave measurements across an extensive length of time and range of conditions. Here, we present 9 months of moored estimates ofεat a fixed depth of 8.4 m at the Stratus mooring site (20°S, 85°W). We find that turbulence regimes are quantified similarly using the Obukhov length scaleand the newer Langmuir stability length scale, suggesting that ocean‐side friction velocityimplicitly captures the influence of Langmuir turbulence at this site. This is illustrated by a strong correlation between surface Stokes driftandthat is likely facilitated by the steady Southeast trade winds regime. In certain regimes,, whereis the von Kármán constant andis instrument depth, and surface buoyancy flux capture our estimates ofwell, collapsing data points near unity. We find that a newer Langmuir turbulence scaling, based onand, scalesεwell at times but is overall less consistent than. Monin‐Obukhov similarity theory (MOST) relationships from prior studies in a variety of aquatic and atmospheric settings largely agree with our data in conditions where convection and wind‐driven current shear are both significant sources of TKE, but diverge in other regimes.

     
    more » « less
  5. Abstract

    Air–sea momentum and scalar fluxes are strongly influenced by the coupling dynamics between turbulent winds and a spectrum of waves. Because direct field observations are difficult, particularly in high winds, many modeling and laboratory studies have aimed to elucidate the impacts of the sea state and other surface wave features on momentum and energy fluxes between wind and waves as well as on the mean wind profile and drag coefficient. Opposing wind is common under transient winds, for example, under tropical cyclones, but few studies have examined its impacts on air–sea fluxes. In this study, we employ a large-eddy simulation for wind blowing over steep sinusoidal waves of varying phase speeds, both following and opposing wind, to investigate impacts on the mean wind profile, drag coefficient, and wave growth/decay rates. The airflow dynamics and impacts rapidly change as the wave age increases for waves following wind. However, there is a rather smooth transition from the slowest waves following wind to the fastest waves opposing wind, with gradual enhancement of a flow perturbation identified by a strong vorticity layer detached from the crest despite the absence of apparent airflow separation. The vorticity layer appears to increase the effective surface roughness and wave form drag (wave attenuation rate) substantially for faster waves opposing wind.

    Significance Statement

    Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in the opposite direction using large-eddy simulation. We find that when waves oppose wind, they decay as expected, but also increase the surface friction much more drastically than when waves follow wind. This finding has important implications for how waves opposing wind are represented as a source of surface friction in forecast models.

     
    more » « less