skip to main content


Title: CREATING A SUSTAINABLE SUPPLEMENTAL INDUCTION PROGRAM FOR STEM TEACHERS
This paper is part of a larger project seeking to create a sustainable infrastructure for engineering students to become STEM teachers in high-need schools. Induction programs are a key component for new teacher retention. A review of the literature and a systematic review of district partners' induction programs provide content for determining what components are needed for a supplemental induction program. One district focuses more on the expectations of mentors, and the other focuses more on new teacher expectations. The initial findings suggest including financial support for both mentors and mentees, providing university engineering faculty mentors, and opportunities for STEM mentees to collaborate.  more » « less
Award ID(s):
2149596
NSF-PAR ID:
10415651
Author(s) / Creator(s):
; ;
Editor(s):
Herron, J. &
Date Published:
Journal Name:
School science and mathematics
Volume:
9
ISSN:
0036-6803
Page Range / eLocation ID:
22-29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective: The purpose of this study was to evaluate the mentoring program of the Minority Scholars from Under-Represented Groups in Engineering and the Social Sciences (SURGE) Capacity in Disasters initiative, a pilot program that aimed to address the challenges that graduate students of color face in academic programs. SURGE promotes mentoring and professional development through its mentoring program for Science, Technology, Engineering, and Mathematics (STEM) students. Methods: Data collection involved distributing online surveys designed in Qualtrics to mentors and mentees five months after the SURGE program’s initiation. Separate surveys were created for student mentees and faculty mentors in order to collect feedback about the mentoring program. Mentees and mentors were also asked to rate their satisfaction with the specific individuals in their mentoring network so that the evaluation team could identify issues that arose across participants. Results: We found that students had several motivations for and expectations from SURGE. A majority of the students found the SURGE mentoring program to have been at least somewhat valuable in helping them achieve these expectations. Nonetheless, students did identify a few challenges, namely lack of swift responsiveness from some mentors, not enough guidance on navigating the mentor-mentee relationship, and little to no in-person interaction. While half of the students mentioned that some individuals within their mentoring team were hard to reach, a majority remained satisfied with the overall responsiveness of their mentors. This suggests that the many-to-many mentoring model helped to ensure none were entirely dissatisfied on this measure. Conclusions: These findings support previous research and show promise for mentoring as an effective intervention to the challenges that underrepresented students face in their academic programs and for their retention and representation, particularly in hazards and disaster-related fields. 
    more » « less
  2. With support from NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM), the Culturally Adaptive Pathway to Success (CAPS) program aims to build an inclusive pathway to accelerate the graduation for academically talented, low-income students in Engineering and Computer Science majors at [University Name], which traditionally serves the underrepresented and educationally disadvantaged minority students in the [City Name area]. CAPS focuses on progressively developing social and career competence in our students via three integrated interventions: (1) Mentor+, a relationally informed advising strategy that encourages students to see their academic work in relation to their families and communities; (2) peer cohorts, providing social support structure for students and enhancing their sense of belonging in engineering and computer science classrooms and beyond; and (3) professional development from faculty who have been trained in difference-education theory, so that they can support students with varying levels of understanding of the antecedents of college success. To ensure success of these interventions, the CAPS program places great emphasis on developing culturally responsive advisement methods and training faculty mentors to facilitate creating a culture of culturally adaptive advising. This paper presents the CAPS progress in the past two project years. In particular, we will share several changes that we have made after the first project year to improve several key components of the program - recruitment, cohort building, and mentor training. The program strengthened the recruitment by actively involving scholars and faculties in reaching out to students and successfully recruited more scholars for the second cohort (16 scholars) than the first cohort (12 scholars). Also, the program has initiated new activities for peer-mentoring and cohort gathering within each major. As continuous development of the mentor training, the program has added a training session focusing on various aspects of intersectionality as it relates to individual’s social identities, and how mentors can use these knowledge to better interact with mentees. In addition to these changes, we will also report findings on how the program impacted on scholars’ academic growth and mentors’ understanding about the culturally adaptive advisement to answer the CAPS research questions (a) how these interventions affect the development of social belonging and engineering identity of CAPS scholars, and (b) the impact of Mentor+ on academic resilience and progress to degree. The program conducted qualitative data collection and analysis via focus group meetings and interviews as well as quantitative data collection and analysis using academic records and surveys. Our findings will help enhance the CAPS program and establish a sustainable Scholars Support Program at the university, which can be implemented with scholarships funded by other sources, and which can be transferred to similar culturally diverse institutions to increase success for students who have socio-economic challenges. 
    more » « less
  3. Despite various efforts to broaden participation, racially marginalized students (i.e., Black, Hispanic/Latinx, and American Indian/Alaskan Native identifying people) continue to be underrepresented in Science, Technology, Engineering, and Math (STEM) fields and careers. Mentoring is recognized as a mechanism that has been shown to support the persistence and success of racially marginalized students in STEM through providing relevant resources, psychosocial support, and fostering identity development. This quantitative work aims to understand the mentoring competencies of mentors who support racially marginalized students in STEM. To promote effective mentoring, it is essential to understand the mentoring competencies of mentors from the perspective of both mentors and mentees. Understanding how mentees perceive various mentoring competencies can help mentors understand deficiencies in their skills to improve their mentoring practices. Using survey data collected from mentors and racially marginalized mentees, we assessed the mentoring competencies of mentors from the perspective of both mentors and mentees. The survey data includes demographic and academic information about mentors and mentees. In addition, using a pre-validated survey instrument, mentors and mentees rated the mentoring competencies of the mentors on a Likert scale across five constructs of mentoring. The five mentoring constructs include maintaining effective communication, aligning expectations, assessing understanding, fostering independence, and promoting professional development. Each construct consists of multiple items for a total of 26 survey items. We compared the mentors’ self-rated competencies with the ratings provided by the mentees to identify differences across demographics. Preliminary findings identify differences in the mentoring competencies of mentors from the perspective of both mentors and mentees. Recommendations for research and practice are also presented. 
    more » « less
  4. Student reflections and using individual development plans (IDPs) for mentoring have been an integral part of an NSF S-STEM project focusing on students pursuing baccalaureate degrees in Engineering Technology (ET). The Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and offers students several high-impact curricular and co-curricular activities to increase the success of academically talented students. This interdisciplinary project brings together the Electrical Engineering Technology, and Computer Network and System Administration programs in the College of Computing and the College of Engineering’s Mechanical Engineering Technology program, with programs in the Pavlis Honors College, an inclusive and unique college designed around high-impact educational practices. An IDP is commonly used in business and industry to assist employees in meeting short- and long-term goals in their professional career. This tool has been adapted for use in the educational setting in a faculty mentoring capacity. The ET program advisors assign the freshman or transfer S-STEM student scholars with faculty mentors to match their area of research interest. The faculty mentors meet with the students a minimum of three to four times a year to review their IDP, make suggestions, and provide input for reaching their goals. The goals of the IDP process are to develop a deeper more meaningful relationship between the advisor and student, reflect and develop a strategy for the scholar’s educational and career success, and manage expectations and identify opportunities. In the initial meeting there are several prompts for the student to write about their goals, strengths, weaknesses and perceived challenges. In subsequent meetings the advisor and student revisit the IDP to discuss progress towards those goals. This study will describe some outcomes of the IDP process providing specific examples from each of the ET programs. Although it is difficult to measure the effect of these relationships, it is one of the high impact practices that have been noted as increasing student engagement and retention. The consequences of COVID-19 introducing a virtual environment to the IDP process will also be examined from the viewpoint of both student and advisor. An advantage of the IDP meetings for students is that advisors may provide personal business connections for internship opportunities and/or research projects that otherwise would not be discussed in a typical office hour or classroom session. One of the innovations of the ETS-IMPRESS program was requiring participation in the Honors Pathway Program, which generally emphasizes intrinsic motivation (and does not use GPA in admissions or awarding of credentials). The honors program consists of three seminar classes and four experiential components; for all of these, students write reflections designed to promote their development of self-authorship. Preliminary survey results show no difference between ETS and other honors students in the areas of student motivation, intention to persist, and professional skill development. ETS students see a closer link between their current major and their future career than non-ETS honors students. A comparative analysis of reflections will investigate students’ perceptions of the program’s effect. 
    more » « less
  5. In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. In summer of 2021, the first cohort of 12 teachers from Region 4 of Southeast Texas participated in the RET program at UH College of Technology (COT). This six-week program, open to local high school STEM teachers in Texas, sought to advance educators’ knowledge of concepts in design and manufacturing as a means of enriching high school curriculums and meeting foundational standards set by 2013’s Texas House Bill 5. These standards require enhanced STEM contents in high school curricula as a prerequisite for graduation, detailed in the Texas Essential Knowledge and Skills standard. Due to the pandemic situation, about 50% of the activities are online and the rest are face to face. About 40% of the time, teachers attended online workshops to enhance their knowledge of topics in engineering design and manufacturing before embarking on applicable research projects in the labs. Six UH COT engineering technology professors each led workshops in a week. The four tenure-track engineering mentors, assisted by student research assistants, each mentored three teachers on projects ranging from additive manufacturing to thermal/fluids, materials, and energy. The group also participated in field trips to local companies including ARC Specialties, Master Flo, Re:3D, and Forged Components. They worked with two instructional track engineering technology professors and one professor of education on applying their learnings to lesson plan design. Participants also met weekly for online Brown Bag teacher seminars to share their experiences and discuss curricula, which was organized by the RET master teacher. On the final day of the program, the teachers presented their curriculum prototype for the fall semester to the group and received completion certificates. The program assessment was led by the assessment specialist, Director of Assessment and Accreditation at UH COT. Teacher participants found the research experience with their mentors beneficial not only to them, but also to their students according to our findings from interviews. The mentors will visit their mentees’ classrooms to see the lesson plans being implemented. In the spring of 2022, the teachers will present their refined curricula at a RET symposium to be organized at UH and submit their standards-aligned plans to teachengineering.org for other K-12 educators to access. 
    more » « less