Recognizing a national and regional need for a highly trained engineering technology STEM workforce with baccalaureate degrees, the Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and an ecosystem of high-impact curricular and co-curricular activities to increase the success of academically talented students. A total of 12 first-time students will be supported for four years and 36 students transferring from community colleges will be supported for two years. The goals of the project are to (1) increase the number and diversity of students pursuing degrees in engineering technology (first-generation, underrepresented students, women, and veterans); (2) add to the body of knowledge regarding best practices in Engineering Technology and promote employment; and (3) contribute to the literature on self-efficacy. The project brings together engineering technology academic programs that are offered through the School of Technology and programs in the Honors College, an inclusive and unique college designed around high-impact educational practices. The project provides a unique opportunity to engage academically talented engineering technology students in activities designed to foster leadership, technical know-how, and employability skills for technology fields that actively recruit and employ graduates from diverse backgrounds and communities. By focusing on a broad range of students, the project will investigate the relationship between student characteristics and student success through (1) a mixed methods pre/post research design that examines differences in motivation, self-efficacy and professional skills and (2) a matched cohort comparison study of transfer students that examines participation/non-participation in engineering technology programs of study with honors’ college elective programming. The paper will address first year project activities including the ETS-IMPRESS recruitment, and advertisement plan to recruit first-year and community college transfer students. The paper will address the student eligibility and selection process, the recruitment of the first cohort scholars, and finally the orientation program including the summer bridge undergraduate research experience.
more »
« less
S-STEM Student Reflections and IDP Process
Student reflections and using individual development plans (IDPs) for mentoring have been an integral part of an NSF S-STEM project focusing on students pursuing baccalaureate degrees in Engineering Technology (ET). The Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and offers students several high-impact curricular and co-curricular activities to increase the success of academically talented students. This interdisciplinary project brings together the Electrical Engineering Technology, and Computer Network and System Administration programs in the College of Computing and the College of Engineering’s Mechanical Engineering Technology program, with programs in the Pavlis Honors College, an inclusive and unique college designed around high-impact educational practices. An IDP is commonly used in business and industry to assist employees in meeting short- and long-term goals in their professional career. This tool has been adapted for use in the educational setting in a faculty mentoring capacity. The ET program advisors assign the freshman or transfer S-STEM student scholars with faculty mentors to match their area of research interest. The faculty mentors meet with the students a minimum of three to four times a year to review their IDP, make suggestions, and provide input for reaching their goals. The goals of the IDP process are to develop a deeper more meaningful relationship between the advisor and student, reflect and develop a strategy for the scholar’s educational and career success, and manage expectations and identify opportunities. In the initial meeting there are several prompts for the student to write about their goals, strengths, weaknesses and perceived challenges. In subsequent meetings the advisor and student revisit the IDP to discuss progress towards those goals. This study will describe some outcomes of the IDP process providing specific examples from each of the ET programs. Although it is difficult to measure the effect of these relationships, it is one of the high impact practices that have been noted as increasing student engagement and retention. The consequences of COVID-19 introducing a virtual environment to the IDP process will also be examined from the viewpoint of both student and advisor. An advantage of the IDP meetings for students is that advisors may provide personal business connections for internship opportunities and/or research projects that otherwise would not be discussed in a typical office hour or classroom session. One of the innovations of the ETS-IMPRESS program was requiring participation in the Honors Pathway Program, which generally emphasizes intrinsic motivation (and does not use GPA in admissions or awarding of credentials). The honors program consists of three seminar classes and four experiential components; for all of these, students write reflections designed to promote their development of self-authorship. Preliminary survey results show no difference between ETS and other honors students in the areas of student motivation, intention to persist, and professional skill development. ETS students see a closer link between their current major and their future career than non-ETS honors students. A comparative analysis of reflections will investigate students’ perceptions of the program’s effect.
more »
« less
- Award ID(s):
- 1742286
- PAR ID:
- 10311694
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference Content Access, Virtual Conference. https://peer.asee.org/37693
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The LINK scholarship program at the University of South Alabama is funded by an NSF S-STEM grant, awarding scholarships to low-income students transferring from community colleges in the Gulf Coast region to complete degrees in chemical, civil, computer, electrical, or mechanical engineering. The program provides financial support and academic mentoring to foster student success and optimize time to degree completion after transfer. Part of that effort includes providing pre-transfer advice through interactions with faculty and advisors at the regional community colleges. A further objective is to promote transfer student integration into the college, as this is expected to enhance academic achievement and professional development. This engagement is encouraged through faculty mentorship with frequent meetings, a cohort-building academic success seminar, and expected participation in engineering-focused student organizations. Our project includes a mixed-methods study to improve our understanding of what support mechanisms effectively integrate transfer students in our college, and how students perceive that integration to enhance their academic and professional development. Early data analysis is presented here. Student surveys indicate that they believe that peers in their classes and their assigned faculty advisors have the greatest impact on their integration and academic success. For professional development, the transfer students find that internships the most importance, followed by participation in student organizations.more » « less
-
Despite interest and potential in STEM (Science, Technology, Engineering and Mathematics), neurodivergent (ND) individuals face underrepresentation and marginalization. These individuals experience low rates of degree completion and even higher dropout rates from STEM programs. In the workplace, elevated levels of unemployment among individuals with disabilities underscore the need to address obstacles to persistence in STEM programs and pathways to the workforce. The AIE-STEMPLOS (Access to Innovative Education in Science, Technology, Engineering, and Mathematics-Providing Learning Opportunities and Scholarship) program at Landmark College, launched in 2021, aims to empower ND STEM scholars by leveraging effective mentoring strategies to support degree completion and career development in STEM fields. Supported by the National Science Foundation (NSF) through scholarship funding (S-STEM), the program's primary goals are to support domestic low-income, academically talented ND scholars in Computer Science and Life Science, create a robust culture of mentorship within the STEM department, and strengthen scholarly professional development. We generally refer to students as scholars in this program as that is the language preferred by the NSF. The mentoring component is designed to enhance psychosocial and professional development through faculty, group, and peer mentoring. Employing tools like the Birkman Method, mentor maps and Individual Development Plans (IDP), the program fosters self-understanding and community among scholars. Evaluation methods include qualitative and quantitative assessments, with data showing high satisfaction with mentor-mentee relationships, robust engagement in professional development activities, and significant improvements in scholars' professional outlook and STEM identity. This comprehensive approach integrates faculty mentors, career counselors, and weekly cohort meetings for mentoring and professional development activities. This paper will highlight the faculty and group/ peer mentoring components of the program, demonstrating how inclusive educational strategies can promote diversity within STEM fields.more » « less
-
This study provides a deeper understanding of the challenges facing community college transfer students in engineering and their faculty advisors at a 4-year research university. Using a phenomenological approach, data was analyzed from interviews with nine engineering transfers and seven faculty advisors. The findings unveiled nuanced barriers faced by engineering transfers and their faculty advisors, including transfers’ academic unpreparedness and struggles with nonacademic responsibilities; advisors’ heavy workload, disconnection with other student services, and lack of communication with community college advisors; and restrictions on course selection and program requirements in 4-year engineering programs. The findings provide meaningful insights into developing new policies and practices to improve the academic advising experience for engineering transfers.more » « less
-
Bridge programs are common interventions colleges implement to improve student recruitment, retention, and performance. Key components are typically specific content instruction, tutoring, mentoring, and college orientation. This paper provides the results of a short-duration summer bridge program designed to increase student awareness of emerging technological fields in engineering technology (ET), specifically the semiconductor and data center industries. High school students in the summer bridge program were provided with information about NOVA’s ET programs, participated in hands-on activities around topics important to semiconductor and data center operations (DCO) technician careers, and met industry representatives through industry site tours. Student data includes participant changes in understanding of ET educational and career pathways, knowledge of OSHA and industrial safety, understanding of college success skills and strategies, and interest in ET careers. Results of the study demonstrated that students of all subgroups (e.g., gender, grade level, race, ethnicity) exhibited equivalent improvement in their understanding of ET education and career pathways while student outcomes in OSHA and college success skills varied by subgroup. Based on these results, the use of a short-duration bridge program is one mechanism for post-secondary institutions to increase awareness of emerging technologies and educational pathways to support careers in those technologiesmore » « less
An official website of the United States government

