skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Environmental Responsibility Framework: A Toolbox for Recognizing and Promoting Ecologically Conscious Research
Abstract Ethical guidelines have provided a cornerstone for morally appropriate research on human or other vertebrate animal subjects since at least 1945. By contrast, although there are environmental impacts associated with all science research activities (including field, laboratory, and computational projects), no comprehensive guiding framework to determine environmentally responsible research practices has been proposed. Drawing from existing models within social, medical, and animal sciences, we propose a framework for explicitly incorporating environmentally focused ethics into scientific research. The Environmental Responsibility 5‐R Framework (ER5F) is centered around Recognition, Refinement, Reduction, Replacement, and Restoration. ER5F starts with Recognizing that research can have environmental consequences, while each subsequent “R” serves as an opportunity for acknowledging, evaluating, and mitigating the environmental impacts of scientific research. These R's include: Refining research questions, Reducing the resources and energy consumed, Replacing materials with sustainable options and altering methods, and in the case of field research, Restoring an environment to mitigate any harm done. By introducing this novel and approachable framework, we strive to promote enhanced awareness across the entire scientific community by encouraging researchers to recognize their responsibility and identify potential mitigation opportunities for the environmental consequences of their research activities. We affirm that in doing so, scientists can more effectively balance the dual goals of maximizing their novel research outputs while minimizing possible harm to the environment.  more » « less
Award ID(s):
1929148 2129383 1831952
PAR ID:
10415895
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
11
Issue:
4
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2017, the report Undergraduate Research Experiences for STEM Students from the National Academy of Science and Engineering and Medicine (NASEM) invited research programs to develop experiences that extend from disciplinary knowledge and skills education. This call to action asks to include social responsibility learning goals in ethical development, cultural issues in research, and the promotion of inclusive learning environments. Moreover, the Accreditation Board for Engineering and Technology (ABET), the National Academy of Engineering (NAE), and the National Science Foundation (NSF) all agree that social responsibility is a significant component of an engineer’s professional formation and must be a guiding force in their education. Social Responsibility involves the ethical obligation engineers have to society and the environment, including responsible conduct research (RCR), ethical decision-making, human safety, sustainability, pro bono work, social justice, and diversity. For this work, we explored the views of Social Responsibility in engineering students that could provide insight into developing formal and informal educational activities for future summer programs. In this exploratory multi-methods study, we investigated the following research question: What views of social responsibility are important for engineering students conducting scientific in an NSF Research Experiences for Undergraduates (REU)? The REU Site selected for this study was a college of engineering located at a major, public, comprehensive, land-grant research university. The Views of Social Responsibility of Scientists and Engineers (VSRoSE) was used to guide our research design. This validated instrument considers the following major social responsibility elements: 1) Consideration of societal consequences, 2) Protection of human welfare and safety, 3) Promotion of environmental sustainability, 4) Efforts to minimize risks, 5) Communication with the public, and 6) Service and Community engagement. Data collection was conducted at the end of their 10-week-long experience in Summer 2022 using Qualtrics. REU students were invited to complete an IRB-approved questionnaire, including collecting demographic data, the VSRoSE-validated survey, and open-ended questions. Open-ended questions were used to explore what experiences have influenced positive student views of social responsibility and provide rich information beyond the six elements of the VSRoSE instrument. The quantitative data from the VSRoSE is analyzed using SPSS. The qualitative data is analyzed by the research team using an inductive coding approach. In this coding process, the researchers derive codes from the data allowing the narrative or theory to emerge from the raw data itself, which is great for exploratory research. The results from this exploratory study will help to strategically initiate a formal and informal research education curriculum at the selected university. In addition, the results may serve as a way for REU administrators and faculty to create metrics of impact on their research activities regarding social responsibility. Finally, this work intends to provoke the ethics and research community to have a deeper conversation about the needs and strategies to educate this unique population of students. 
    more » « less
  2. null (Ed.)
    A major goal of government and non-profit scientific funding agencies is to support research and development (R&D) that has broad impacts. This study proposes a new framework, called the Inclusion-Immediacy Criterion (IIC), to determine whether research benefits marginalized communities, reduces inequality, and encourages inclusive innovation. To test the framework, the study analyzes NSF sponsored nanotechnology grant abstracts from 2013 to 2017. We find that 109 out of the 300 grants feature research and grant activities that are inclusive, while 235 out of the 300 grants have research and grant activities that either maintain the status quo or predominately target advantaged groups. Of the 109 grants with inclusive broader impacts, 9 of them involve inclusive research that is intrinsic to the underlying work. In comparison there are 102 grants that feature inclusive research that is directly related to the research. Of those 102 direct-inclusive grants, 99 of them relate to broadening participation of women and underrepresented minority populations is science fields. 
    more » « less
  3. Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry. 
    more » « less
  4. Abstract Novel genetic interventions may offer innovative solutions to environmental conservation challenges, but they also represent new kinds of risks and concerns for diverse publics. Yet, by focusing on potential negative outcomes of emerging technologies like gene editing, their potential utility in species protection could lead to overblown fears of unknown and unanticipated consequences. In response, Revive and Restore organized a workshop in June 2020 entitled, “Intended Consequences,” to highlight conservation successes in the discourse and governance of genomic interventions. This article argues that if we seek to emphasize Intended Consequences to embolden innovative conservation efforts, we must simultaneously query whose intentions are included and what consequences are considered to ensure that environmental goals are accompanied by the goals of responsibility, democracy, and justice. These questions reveal that the governance and management of conservation interventions always rest upon value judgements. Inspired and informed by the Responsible Research and Innovation framework, we encourage anticipation of potential outcomes, reflection on assumptions and intentions, inclusion of diverse stakeholders and perspectives, and a commitment to responding thoughtfully to concerns and preferences of communities and broader publics. 
    more » « less
  5. Societal Impact Statement It is increasingly common for plant scientists and urban planning and design professionals to collaborate on interdisciplinary teams that integrate scientific experiments into public and social urban spaces. However, neither the procedural ethics that govern scientific experimentation, nor the professional ethics of urban design and planning practice, fully account for the possible impacts of urban ecological experiments on local residents and communities. Scientists that participate in design and planning teams act as decision‐makers, and must expand their domain of ethical consideration accordingly. Conversely, practitioners who engage in ecological experiments take on the moral responsibilities inherent in generation of knowledge. To avoid potential harm to human and non‐human inhabitants of cities while maintaining scientific and professional integrity in research and practice, an integrated ethical framework is needed for urban ecological planning and design. SummaryWhile there are many ethical and procedural guidelines for scientists who wish to inform decision‐making and public policy, urban ecologists are increasingly embedded in planning and design teams to integrate scientific measurements and experiments into urban landscapes. These scientists are not just informing decision‐making – they are themselves acting as decision‐makers. As such, researchers take on additional moral obligations beyond scientific procedural ethics when designing and conducting ecological design and planning experiments. We describe the growing field of urban ecological design and planning and present a framework for expanding the ethical considerations of socioecological researchers and urban practitioners who collaborate on interdisciplinary teams. Drawing on existing ethical frameworks from a range of disciplines, we outline possible ways in which ecologists, social scientists, and practitioners should expand the traditional ethical considerations of their work to ensure that urban residents, communities, and non‐human entities are not harmed as researchers and practitioners carry out their individual obligations to clients, municipalities, and scientific practice. We present an integrated framework to aid in the development of ethical codes for research, practice, and education in integrated urban ecology, socioenvironmental sciences, and design and planning. 
    more » « less