skip to main content


Title: BICEP/Keck. XVII. Line-of-sight Distortion Analysis: Estimates of Gravitational Lensing, Anisotropic Cosmic Birefringence, Patchy Reionization, and Systematic Errors
Abstract

We present estimates of line-of-sight distortion fields derived from the 95 and 150 GHz data taken by BICEP2, BICEP3, and the Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrumALϕϕ=0.95±0.20. We constrain polarization rotation, expressed as the coupling constant of a Chern–Simons electromagnetic termgaγ≤ 2.6 × 10−2/HI, whereHIis the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 MpcB1Mpc≤ 6.6 nG at 95 GHz. We constrain the rms of optical depth fluctuations in a simple “crinkly surface” model of patchy reionization, findingAτ< 0.19 (2σ) for the coherence scale ofLc= 100. We show that all of the distortion fields of the 95 and 150 GHz polarization maps are consistent with simulations including lensed ΛCDM, dust, and noise, with no evidence for instrumental systematics. In some cases, theEBandTBquadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spuriousB-modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage.

 
more » « less
Award ID(s):
2220445 1638957 2220446 2220444 1836010 1638970 2220447 2220448 1639040
PAR ID:
10415908
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
949
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 43
Size(s):
Article No. 43
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using the novel semi-numerical code for reionization AMBER, we model the patchy kinetic Sunyaev–Zel’dovich (kSZ) effect by directly specifying the reionization history with the redshift midpointzmid, duration Δz, and asymmetryAz. We further control the ionizing sources and radiation through the minimum halo massMhand the radiation mean free pathλmfp. AMBER reproduces the free-electron number density and the patchy kSZ power spectrum of radiation–hydrodynamic simulations at the target resolution (1 Mpch−1) with matched reionization parameters. With a suite of (2 Gpc/h)3simulations using AMBER, we first constrain the redshift midpoint 6.0 <zmid< 8.9 using the Planck 2018 Thomson optical depth result (95% CL). Then, assumingzmid= 8, we find that the amplitude ofD=3000pkSZscales linearly with the duration of reionization Δzand is consistent with the 1σupper limit from South Pole Telescope (SPT) results up to Δz< 5.1 (Δzencloses 5%–95% ionization). Moreover, a shorterλmfpcan lead to a ∼10% lowerD=3000pkSZand a flatter slope in theD=3000pkSZΔzscaling relation, thereby affecting the constraints on Δzat= 3000. Allowingzmidandλmfpto vary simultaneously, we get spectra consistent with the SPT result (95% CL) up to Δz= 12.8 (butAz> 8 is needed to ensure the end of reionization beforez= 5.5). We show that constraints on the asymmetry require ∼0.1μk2measurement accuracy at multipoles other than= 3000. Finally, we find that the amplitude and shape of the kSZ spectrum are only weakly sensitive toMhunder a fixed reionization history and radiation mean free path.

     
    more » « less
  2. Abstract

    In this follow-up analysis, we update previous constraints on the transitional Planck mass (TPM) modified gravity model using the latest version of EFTCAMB and provide new constraints using South Pole Telescope (SPT) and Planck anisotropy data along with Planck cosmic microwave background lensing, baryon acoustic oscillations, and Type Ia supernovae data and a Hubble constant,H0, prior from local measurements. We find that large shifts in the Planck mass lead to large suppression of power on small scales that is disfavored by both the SPT and Planck data. Using only the SPT temperature-polarization–polarization-polarization (TE-EE) data, this suppression of power can be compensated for by an upward shift of the scalar index tons= 1.003 ± 0.016, resulting inH0=71.940.85+0.86km m−1Mpc−1and a ∼7% shift in the Planck mass. Including the Planck temperature-temperature (TT) ≤ 650 and Planck TE-EE data restricts the shift to be <5% at 2σwithH0= 70.65 ± 0.66 km m−1Mpc−1. Excluding theH0prior, the SPT and Planck data constrain the shift in the Planck mass to be <3% at 2σwith a best-fit value of 0.04%, consistent with the Λ cold dark matter limit. In this caseH0=69.090.68+0.69km s−1Mpc−1, which is partially elevated by the dynamics of the scalar field in the late Universe. This differs from early dark energy models that prefer higher values ofH0when the high-Planck TT data are excluded. We additionally constrain TPM using redshift space distortion data from BOSS DR12 and cosmic shear, galaxy–galaxy lensing, and galaxy clustering data from DES Y1, finding both disfavor transitions close to recombination, but earlier Planck mass transitions are allowed.

     
    more » « less
  3. Abstract

    We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σsignificance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude ofAlens= 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model andAlens= 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combinationS8CMBLσ8Ωm/0.30.25ofS8CMBL=0.818±0.022from ACT DR6 CMB lensing alone andS8CMBL=0.813±0.018when combining ACT DR6 and PlanckNPIPECMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshiftsz∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarilyz∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.

     
    more » « less
  4. Abstract

    We measure the radius–velocity phase-space edge profile of A1063 using galaxy redshifts from Karman et al. and Mercurio et al. Combined with a cosmological model and after accounting for interlopers and sampling effects, we infer the escape velocity profile. Using the Poisson equation, we then directly constrain the gravitational potential profile and find excellent agreement between three different density models. For the Navarro–Frenk–White profile, we find log10(M200,crit) =15.400.12+0.06M, consistent to within 1σof six recently published lensing masses. We argue that this consistency is due to the fact that the escape technique shares no common systematics with lensing other than radial binning. These masses are 2–4σlower than estimates made using X-ray data, in addition to the Gómezet al. velocity dispersion estimate. We measure the 1D velocity dispersion withinr200to beσv=147799+87km s−1, which combined with our escape velocity mass, brings the dispersion for A1063 in-line with hydrodynamic cosmological simulations for the first time.

     
    more » « less
  5. Abstract

    We present Keck Planet Imager and Characterizer (KPIC) high-resolution (R∼35,000)K-band thermal emission spectroscopy of the ultrahot Jupiter WASP-33b. The use of KPIC’s single-mode fibers greatly improves both blaze and line-spread stabilities relative to slit spectrographs, enhancing the cross-correlation detection strength. We retrieve the dayside emission spectrum with a nested-sampling pipeline, which fits for orbital parameters, the atmospheric pressure–temperature profile, and the molecular abundances. We strongly detect the thermally inverted dayside and measure mass-mixing ratios for CO (logCOMMR=1.10.6+0.4), H2O (logH2OMMR=4.10.9+0.7), and OH (logOHMMR=2.11.1+0.5), suggesting near-complete dayside photodissociation of H2O. The retrieved abundances suggest a carbon- and possibly metal-enriched atmosphere, with a gas-phase C/O ratio of0.80.2+0.1, consistent with the accretion of high-metallicity gas near the CO2snow line and post-disk migration or with accretion between the soot and H2O snow lines. We also find tentative evidence for12CO/13CO ∼ 50, consistent with values expected in protoplanetary disks, as well as tentative evidence for a metal-enriched atmosphere (2–15 × solar). These observations demonstrate KPIC’s ability to characterize close-in planets and the utility of KPIC’s improved instrumental stability for cross-correlation techniques.

     
    more » « less