skip to main content


Title: GoPose: 3D Human Pose Estimation Using WiFi
This paper presents GoPose, a 3D skeleton-based human pose estimation system that uses WiFi devices at home. Our system leverages the WiFi signals reflected off the human body for 3D pose estimation. In contrast to prior systems that need specialized hardware or dedicated sensors, our system does not require a user to wear or carry any sensors and can reuse the WiFi devices that already exist in a home environment for mass adoption. To realize such a system, we leverage the 2D AoA spectrum of the signals reflected from the human body and the deep learning techniques. In particular, the 2D AoA spectrum is proposed to locate different parts of the human body as well as to enable environment-independent pose estimation. Deep learning is incorporated to model the complex relationship between the 2D AoA spectrums and the 3D skeletons of the human body for pose tracking. Our evaluation results show GoPose achieves around 4.7cm of accuracy under various scenarios including tracking unseen activities and under NLoS scenarios.  more » « less
Award ID(s):
2146354 1910519
NSF-PAR ID:
10416011
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
6
Issue:
2
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. WiFi human sensing has become increasingly attractive in enabling emerging human-computer interaction applications. The corresponding technique has gradually evolved from the classification of multiple activity types to more fine-grained tracking of 3D human poses. However, existing WiFi-based 3D human pose tracking is limited to a set of predefined activities. In this work, we present Winect, a 3D human pose tracking system for free-form activity using commodity WiFi devices. Our system tracks free-form activity by estimating a 3D skeleton pose that consists of a set of joints of the human body. In particular, we combine signal separation and joint movement modeling to achieve free-form activity tracking. Our system first identifies the moving limbs by leveraging the two-dimensional angle of arrival of the signals reflected off the human body and separates the entangled signals for each limb. Then, it tracks each limb and constructs a 3D skeleton of the body by modeling the inherent relationship between the movements of the limb and the corresponding joints. Our evaluation results show that Winect is environment-independent and achieves centimeter-level accuracy for free-form activity tracking under various challenging environments including the none-line-of-sight (NLoS) scenarios. 
    more » « less
  2. In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots, while operating in non-line-of-sight and unmapped environments, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot in the team, which we term as an AOA profile. The key intuition behind our approach is to emulate antenna arrays in the air as a robot moves freely in 2D or 3D space. The small differences in the phase and amplitude of WiFi signals are thus processed with knowledge of a robots’ local displacements (often provided via inertial sensors) to obtain the profile, via a method akin to Synthetic Aperture Radar (SAR). The main contribution of this work is the development of i) a framework to accommodate arbitrary 2D and 3D trajectories, as well as continuous mobility of both transmitting and receiving robots, while computing AOA profiles between them and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry that is based on the Cramer Rao Bound and antenna array theory. This is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to the full 3D space, and/or requires transmitting robots to be static during data acquisition periods. In fact, we find that allowing robots to use their full mobility in 3D space while performing SAR, results in more accurate AOA profiles and thus better AOA estimation. We formally characterize this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments on air/ground robot platforms. Our experimental results bolster our theoretical findings, demonstrating that 3D trajectories provide enhanced and consistent accuracy, with AOA error of less than 10 deg for 95% of trials. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor (Intel RealSense T265 tracking camera), for estimating the robots’ local displacements, and we provide theoretical as well as empirical results that show the impact of typical trajectory estimation errors on the measured AOA. Finally, we demonstrate the performance of our system on a multi-robot task where a heterogeneous air/ground pair of robots continuously measure AOA profiles over a WiFi link to achieve dynamic rendezvous in an unmapped, 300 square meter environment with occlusions. 
    more » « less
  3. In this paper, we develop the analytical framework for a novel Wireless signal-based Sensing capability for Robotics (WSR) by leveraging a robots’ mobility in 3D space. It allows robots to primarily measure relative direction, or Angle-of-Arrival (AOA), to other robots, while operating in non-line-of-sight unmapped environments and without requiring external infrastructure. We do so by capturing all of the paths that a wireless signal traverses as it travels from a transmitting to a receiving robot in the team, which we term as an AOA profile. The key intuition behind our approach is to enable a robot to emulate antenna arrays as it moves freely in 2D and 3D space. The small differences in the phase of the wireless signals are thus processed with knowledge of robots’ local displacement to obtain the profile, via a method akin to Synthetic Aperture Radar (SAR). The main contribution of this work is the development of (i) a framework to accommodate arbitrary 2D and 3D motion, as well as continuous mobility of both signal transmitting and receiving robots, while computing AOA profiles between them and (ii) a Cramer–Rao Bound analysis, based on antenna array theory, that provides a lower bound on the variance in AOA estimation as a function of the geometry of robot motion. This is a critical distinction with previous work on SAR-based methods that restrict robot mobility to prescribed motion patterns, do not generalize to the full 3D space, and require transmitting robots to be stationary during data acquisition periods. We show that allowing robots to use their full mobility in 3D space while performing SAR results in more accurate AOA profiles and thus better AOA estimation. We formally characterize this observation as the informativeness of the robots’ motion, a computable quantity for which we derive a closed form. All analytical developments are substantiated by extensive simulation and hardware experiments on air/ground robot platforms using 5 GHz WiFi. Our experimental results bolster our analytical findings, demonstrating that 3D motion provides enhanced and consistent accuracy, with a total AOA error of less than 10for 95% of trials. We also analytically characterize the impact of displacement estimation errors on the measured AOA and validate this theory empirically using robot displacements obtained using an off-the-shelf Intel Tracking Camera T265. Finally, we demonstrate the performance of our system on a multi-robot task where a heterogeneous air/ground pair of robots continuously measure AOA profiles over a WiFi link to achieve dynamic rendezvous in an unmapped, 300 m2environment with occlusions.

     
    more » « less
  4. In this work, we proposeMiSleep, a deep learning augmented millimeter-wave (mmWave) wireless system to monitor human sleep posture by predicting the 3D location of the body joints of a person during sleep. Unlike existing vision- or wearable-based sleep monitoring systems,MiSleepis not privacy-invasive and does not require users to wear anything on their body.MiSleepleverages knowledge of human anatomical features and deep learning models to solve challenges in existing mmWave devices with low-resolution and aliased imaging, and specularity in signals.MiSleepbuilds the model by learning the relationship between mmWave reflected signals and body postures from thousands of existing samples. Since a practical sleep also involves sudden toss-turns, which could introduce errors in posture prediction,MiSleepdesigns a state machine based on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during the rest states. We evaluateMiSleepwith real data collected from Commercial-Off-The-Shelf mmWave devices for 8 volunteers of diverse ages, genders, and heights performing different sleep postures. We observe thatMiSleepidentifies the toss-turn events start time and duration within 1.25 s and 1.7 s of the ground truth, respectively, and predicts the 3D location of body joints with a median error of 1.3 cm only and can perform even under the blankets, with accuracy on par with the existing vision-based system, unlocking the potential of mmWave systems for privacy-noninvasive at-home healthcare applications.

     
    more » « less
  5. Smart ear-worn devices (called earables) are being equipped with various onboard sensors and algorithms, transforming earphones from simple audio transducers to multi-modal interfaces making rich inferences about human motion and vital signals. However, developing sensory applications using earables is currently quite cumbersome with several barriers in the way. First, time-series data from earable sensors incorporate information about physical phenomena in complex settings, requiring machine-learning (ML) models learned from large-scale labeled data. This is challenging in the context of earables because large-scale open-source datasets are missing. Secondly, the small size and compute constraints of earable devices make on-device integration of many existing algorithms for tasks such as human activity and head-pose estimation difficult. To address these challenges, we introduce Auritus, an extendable and open-source optimization toolkit designed to enhance and replicate earable applications. Auritus serves two primary functions. Firstly, Auritus handles data collection, pre-processing, and labeling tasks for creating customized earable datasets using graphical tools. The system includes an open-source dataset with 2.43 million inertial samples related to head and full-body movements, consisting of 34 head poses and 9 activities from 45 volunteers. Secondly, Auritus provides a tightly-integrated hardware-in-the-loop (HIL) optimizer and TinyML interface to develop lightweight and real-time machine-learning (ML) models for activity detection and filters for head-pose tracking. To validate the utlity of Auritus, we showcase three sample applications, namely fall detection, spatial audio rendering, and augmented reality (AR) interfacing. Auritus recognizes activities with 91% leave 1-out test accuracy (98% test accuracy) using real-time models as small as 6-13 kB. Our models are 98-740x smaller and 3-6% more accurate over the state-of-the-art. We also estimate head pose with absolute errors as low as 5 degrees using 20kB filters, achieving up to 1.6x precision improvement over existing techniques. We make the entire system open-source so that researchers and developers can contribute to any layer of the system or rapidly prototype their applications using our dataset and algorithms. 
    more » « less